
The SRM For Programmers
January 6, 2004

Lake Buena Vista, Florida

Cameron D. Kellough
Research Engineer

SRI International
cameron.kellough@sri.com

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

2

Goals

• Identify SRM API Implementations
• Identify Important Concepts
• Identify Spatial Operations
• Identify Details Affecting Applications
• Work Examples Performing Operations

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

3

SRM API Implementations

• SRM C API (functional methodology)
• SRM C++ API (object methodology)
• SRM JAVA API (object methodology)

• The remainder of this presentation covers
conceptual information about the API's
and uses examples from the C++ API

• Other API versions are similar

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

4

Important Concepts

• Spatial Reference Frame (SRF)
– SRF Parameters
– Object Reference Model (ORM)
– Transformation Parameters (HSR)

• Spatial Primitives
– Coordinate
– Direction
– Orientation

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

5

SRF: General Definition
• An SRF specifies the context in which to

interpret spatial primitives (Coordinates,
Directions, and Orientations)

• An SRF is to spatial information what a BNF
grammar is to a programming language

• An SRF embodies the information traditionally
distributed between one or more of the following:
– Earth Model
– Coordinate System
– Datum
– Datum Shift Parameters

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

6

SRF: In the SEDRIS Lexicon

• In SEDRIS, an SRF consists of:
– SRF Parameters

• Describe parameters such as the central meridian of a map
projection SRF

– An Object Reference Model (ORM)
• Determines the position-space embedding
• Optionally describes the shape of the Celestial Object being

modeled (Many celestial objects modeled besides earth)

– Optionally: Transformation Parameters (HSR)
• Describe relationship between chosen ORM for the Celestial

Object being modeled and other ORM’s for the same object
– Works by Expressing Chosen ORM ? Reference ORM

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

7

SRF's without HSR

• A source SRF with only SRF Parameters and
ORM disambiguates spatial primitives in its
context allowing the construction of
corresponding target spatial primitives in any
target SRF with the same ORM for which the
transformed source spatial primitive remains
defined

• No "Horizontal Datum Shifts" Possible

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

8

SRF's with HSR

• A SRF that specifies SRF parameters ORM, and
Transformation Parameters HSR disambiguates
a source spatial primitive in its context allowing
the construction of corresponding target spatial
primitives in any target SRF for which the
transformed source spatial primitive remains
defined

• "Horizontal Datum Shifts" Possible

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

9

SRF: Conclusion

• Application must supply values for SRF
parameters and ORM to create SRF; should
supply HSR if known

• API returns new SRF object for later use in:
– The Creation of Coordinates
– The Creation of Directions
– The Creation of Orientations
– Spatial Operations

• If no HSR is provided then no "Horizontal Datum
Shifts" are available for primitives in this context

• SRF is immutable once created by the API

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

10

Coordinate: General Definition

• A Coordinate contains a tuple of numbers
which in the context of an SRF can be
interpreted as a spatial location

• In SEDRIS, any given Coordinate can be
in the context of exactly one SRF

• The API uses three types of Coordinates
– Two Dimensional (2-tuple)
– Surface (2-tuple)
– Three Dimensional (3-tuple)

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

11

Dimensionality Boot Camp: Week 1

• CS Type: Two Dimensional
– Location trapped on a sheet of paper
– Two axes
– Both axes co-planar
– No notion of height whatsoever allowed by the

CS type

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

12

Dimensionality Boot Camp: Week 2

• CS Type: Surface
– Location trapped on a two dimensional rubber

sheet stretched around [or occasionally
tangent to] a three dimensional object

– Two orthogonal axes only [NOT three]
– Notion of Height But . . .

• Constrained by CS type: to surface of the two
dimensional rubber sheet

• Cannot be specified by Application

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

13

Dimensionality Boot Camp: Week 3

• CS Type: Three Dimensional
– Location unconstrained
– Really three dimensional: Three axes
– Location not constrained to a surface
– Third coordinate component [height for SRF's

defining height] not constrained by CS type

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

14

API: Coordinate

• A Coordinate is specific to a given SRF
• A Coordinate is created by the appropriate

method on an SRF object of the desired
type

• Once created by the API, the values in a
Coordinate may be modified at will by the
application

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

15

API: Coordinate Specifics

• API permits Coordinate values to be
changed by the application:
– Allows OOP applications to create object once

and change the values rather than creating a
new coordinate for each operation

– API cannot thus ensure the validity of a given
coordinate from API call to API call

– Application responsible for the contents of the
coordinate

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

16

Direction: General Definition Part 1

• A direction contains two three-tuples
– The first three-tuple is a Reference Location

coordinate specifying the origin of the
direction vector

– The second three-tuple contains a vector
specifying a direction at the given Reference
Location

• In SEDRIS, a given Direction can be in the
context of exactly one SRF

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

17

Direction: General Definition Part 2

• The meaning of the second (bound vector)
tuple is determined by the characteristics
of the SRF in whose context the Direction
is being created

• The three different interpretations are for:
– True Vector Spaces
– Translated/Rotated True Vector Spaces
– Non Vector Spaces

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

18

Direction: General Definition Part 3

• Vector Spaces
– Celestiocentric

• Reference Location Doesn’t affect
direction because vectors are invariant
under translation

• [Free] Vector (is bound to origin) and
pointy end is at the three-tuple
representing direction from {0,0,0}

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

19

Direction: General Definition Part 4

• Translated/Rotated True Vector Spaces
– Local Tangent Space Euclidean [LTSE]

• Reference Location is LTSE SRF origin
• Bound vector tuple bound to LTSE SRF origin
• Pointy end at bound vector three tuple

representing direction from LTSE SRF origin

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

20

Direction: General Definition
Part 4A

• In an LTSE SRF
– X points at the LTSE azimuth + ? /2
– Y points at the LTSE azimuth
– Z points Up as defined by Normal to Ellipsoid

Surface

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

21

Direction: General Definition Part 5

• Non Vector Spaces use constructed CLTSE
– Celestiodetic
– Map Projections

• Mercator, Transverse Mercator, Oblique Mercator
• Equidistant Cylindrical, Lambert Conformal Conic

• Reference Location used as origin in construction
of new CLTSE SRF

• Bound vector tuple bound to CLTSE SRF’s origin
• Pointy end is at bound vector three tuple

representing direction from CLTSE SRF origin

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

22

Direction: General Definition
Part 5A

• CLTSE Like LTSE Case with zero azimuth
– X points East
– Y points North
– Z points Up as defined by Normal to Ellipsoid

Surface

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

23

Interpreting Directions

• In the context of CLTSE, Celestiodetic, and Map
Projection SRF’s, the bound vector tuple {0,1,0}
represents true north at any Reference Location!
Bound vector tuple {0,0,1} represents Up.

• A North Pointing Direction in the context of an
CLTSE, Celestiodetic, or Map Projection SRF,
when transformed to the Celestiocentric SRF, is
unique! (except on the equator)

• Map north equals true north plus Convergence
of the Meridian.

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

24

API: Direction

• Direction is specific to given SRF
• Direction created by appropriate method

on SRF object of desired type
• Once created by the API, the reference

location and vector become immutable
• Transforming a direction creates a new

direction in the context of a target SRF
• Directions are Normalized

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

25

Orientation: General Definition

• An Orientation contains a three-tuple of numbers
and a 3x3 Matrix
– The three-tuple contains a Reference Location

coordinate
– The 3x3 Matrix is a rotation matrix that specifies the

values required to rotate a mathematical vector or
matrix in the context of this SRF to a particular
absolute spatial orientation

• In SEDRIS, any given Orientation can be in the
context of exactly one SRF

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

26

Orientation: General Definition
(2 of 4)

• Orientations like Directions are interpreted
differently depending on the SRF to which
they belong

• Since an Orientation behaves just like a
compilation of three Directions, the three
contexts for interpreting Orientations are
analogous to those for Directions

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

27

Orientation: General Definition
(3 of 4)

• Celestiocentric
– Matrix is compilation of three direction vector

components (free vectors w/respect to origin)
– Reference Location Immaterial

• LTSE
– Matrix is compilation of three direction vector

components (bound vectors w/respect to
Reference Location) rotated around the Z axis
by the azimuth value

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

28

Orientation: General Definition
(4 of 4)

• Non Vector Spaces using CLTSE
– Matrix is compilation of three direction vector

components (bound vectors w/respect to
constructed CLTSE origin)

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

29

Orientation: Example (1 of 2)
• Imagine 3 Airplanes

– Flight Leader [FL] (in context of CLTSE 1)
– Wingman 1 [W1] (in context of CLTSE 2)
– Wingman 2 [W2] (in context of CLTSE 3)

• FL applies an orientation that Rolls him 30 degrees right
in CLTE1
– Leader transforms this orientation to CLTSE 2

• W1 applies new orientation, rolls 60 deg right in CLTSE 2
– Leader transforms this orientation to CLTSE 3

• W2 applies new orientation, doesn’t roll at all
• All planes end up in same absolute orientation
• [This contrived example rotates about only one axis]

Orientation Example: (2 of 2)

Absolute Spatial Orientation is equalized for vectors in different SRF’s:

• Apply an orientation in the context of a source SRF to a vector in the same SRF

• Transform the source orientation to the context of a target SRF

• Apply the transformed orientation to the vector in the target SRF

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

31

Interpreting Orientations

• Transforming an Orientation containing the
Identity Matrix between source and target
SRF's creates Orientation whose matrix
values can be used to transform a
direction from the context of a source SRF
to the context of a target SRF

• Applications may store the matrix values
from this computation to perform direction
conversion without invoking the API

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

32

API: Orientation

• Orientation is specific to given SRF
• Orientation created by appropriate method

on SRF object of desired type
• Transforming an Orientation creates a new

Orientation in the context of a target SRF
• Once created by API, the reference

location and matrix in an Orientation
become immutable

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

33

Spatial Operations: 3D
Coordinates

• Transformation
– Conversion
– ORM Change [Horizontal Datum Shift]

• Calculate Euclidean Distance
• Truncation to Surface Coordinate
• Instancing from abstract to concrete space

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

34

Spatial Operations: Surface
Coordinates

• Surface Coordinates
– Calculate Euclidean Distance
– Calculate Geodesic Distance
– Calculate Vertical Separation Offset
– Promote to 3D Coordinate
• Additionally for Surface Map Coordinates:

• Calculate Convergence of the Meridian
• Calculate Map Azimuth
• Calculate Point Scale

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

35

Spatial Operations: 2D
Coordinates

• Transformation
– Conversion

• Calculate Euclidean Distance
• Instancing from abstract to concrete space

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

36

Spatial Operations: Directions

• Transformation
– Conversion
– ORM Change [Horizontal Datum Shift]

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

37

Spatial Operations: Orientations

• Transformation
– Conversion
– ORM Change [Horizontal Datum Shift]

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

38

Implementation Details Affecting
Applications

• No Transformation initialization is
necessary at the Application level
– Transformation Initialization Done Internally!

• The SRM API caches initialization data
associated with Transformations on the
target SRF

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

39

Implementation Details:
Performance

• Large numbers of source SRF's cached on
a given target SRF may impact the
performance of transformations to that
target SRF

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

40

SRM Implementation Details:
Threads

• The SRM implementation is thread safe if
and only if:
– No thread uses objects that were created by

another thread

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

41

One Possible Application
Optimization

• The SRM API can produce the
transformation matrix to change directions
and orientations from source to target SRF

• A performance sensitive Application with
software access to vector hardware could
compute a transformation matrix with the
API and apply it to the data through vector
hardware for a substantial improvement
when transforming large direction datasets

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

42

On to the Examples!!!!

• The following examples are written using
the SEDRIS SRM version 4.0.0 Alpha.

• The semantics of specifying ORM data
and HST are expected to deviate from that
shown here in the upcoming final release
– Expected changes are due to changes in ISO

18026 on which the SRM implementation is
based

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

43

Ex 1: Changing TM Coordinate
to CD Coordinate

• A Transverse Mercator Coordinate is
changed to a Celestiodetic [called
geodetic elsewhere] Coordinate by the
following steps:
– Create TM SRF
– Create CD SRF
– Create TM Coordinate
– Create CD Coordinate
– Do the Transformation

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

44

Creating a TM SRF

• Create TM SRF
– ORM
– Origin Longitude
– Origin Latitude
– Central Scale Factor
– False Easting
– False Northing

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

45

Creating a CD SRF

• Create CD SRF
– ORM

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

46

Changing SRF's

• Use ChangeCoordinate3DSRF method
– Method located on Target Celestiodetic SRF

• To print the returned values
– Must cast to the specific concrete type!

• Example 1 also reconverts the point to the
original Source SRF showing numerical
accuracy round trip for this operation to be
less than .03 mm

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

47

ORM Changes: Example 1½

• Were an ORM change [Horizontal Datum
Shift] required, it's still easy:
– Put the desired ORM in the Target SRF
– Now when the transformation runs, it now

transparently performs the ORM change

• Lets Try it using:
– SRM_ORM_N_AM_1927_WESTERN_US

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

48

Input Mechanisms

• Example 1 shows SRF constructors taking
SRF parameters as function arguments

• Example 2 shows SRF constructors can
also take structures

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

49

Error Handling: Exceptions

• Example 3 demonstrates catching an SRM
exception
– Application tries creating a TM direction
– Unfortunately SRM version 4.0.0 Alpha

encounters an error in this example
– SRM API throws srm::Exception
– Application catches the exception, prints the

description, and continues

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

50

Conclusion:

• The SRM API provides a high-level black-
box interface to complex algorithms that
perform Spatial Operations

• SRF's and spatial primitives are easily
created & passed to routines providing all
Spatial Operations Defined in ISO 18026!

January 6, 2004 The SRM For Programmers
Copyright © 2004 SEDRIS™

51

The End

