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10 Spatial operations

10.1 Introduction

This International Standard specifies operations on SRF representations of spatial positions and spatial directions for 3D object-spaces.  These operations are based on the representation of a spatial position in the ORM realization induced embedding of position-space into object-space.  The effect on this representation of changing the ORM realization is specified first as operations on 3D ORM realizations.  Next the general case of changing the SRF representation of a spatial position is specified, followed by important special cases.

The specification of a spatial direction in the context of an SRF is defined.  The general case of changing the SRF representation of a spatial direction is specified, followed by important special cases.

Functions relating map projection geometry to spatial geometry are specified.

10.2 Notation and terminology 

An important category of spatial operations is changing spatial information represented in one SRF to spatial information represented in a second SRF.  For this category of operations, the adjective “source” shall be used to refer to the first SRF, and the adjective “target” shall be used to refer to the second SRF.

The notation in Table 10.1 is used in this clause.  Each item is fully defined when first used.

Table 10.1 — Notation

	Notation
	Definition

	ORMS
	Source 3D ORM realization. 

	ORMT
	Target 3D ORM realization.

	ORMR
	Reference 3D ORM for a given spatial object.

	H​SR
	Transformation from the embedding of ORMS to the reference ORMR. 

	H​TR
	Transformation from the embedding of ORMT to the reference ORMR.

	H​ST
	Transformation from the embedding of ORMS to ORMT.

	SRFS
	Source SRF based on ORMS. 

	SRFT
	Target SRF based on ORMS.

	CSS
	CS of SRFS.

	CST
	CS of SRF​T.
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	The CSS generating function.
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	The CST inverse generating function.
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	The SRFS coordinate representation of a spatial position.
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	The SRFT coordinate representation of a spatial position.
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	Source and target direction vectors.


10.3 Operations on 3D ORM realizations

10.3.1 Object fixed ORM realizations for a single object

As specified in 7.6, two or more object fixed 3D ORM realizations for the same spatial object shall specify the seven parameter values of the ORM binding with respect to the specified reference ORM realization for that object.  The seven-parameter values for ORMS determine the transformation of position coordinates in the embedding of ORMS to corresponding position coordinates in the embedding of ORMS.  The seven-parameter transformation H​SR, from ORMS to ORMR is given by Equation (10.1) as specified in Equation (7.3).  The transformation, as a vector operation, is in the form of a (scaled) matrix multiplication followed by a vector addition.  This form of vector operation is an affine operation.
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where:
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The seven-parameter transformation H​TR, from ORMT to ORMR is similarly defined.  An important operation is the transformation, HST, from ORMT to ORMR, when neither the source nor the target are necessarily the reference ORM realization.  The HST transformation may be expressed as the composition of H​SR with 
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 (the inverse of HTR) as in Equation (10.3) (see Figure 10.1).
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Figure 10.1 — Composed transformations

The inverse operation 
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is also an affine operation as shown in Equation (10.4).
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The matrix 
[image: image13.wmf]TR
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is unitary so that its transpose 
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is also its inverse
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.  Its inverse is also the matrix 
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corresponding to the reverse rotations of ORMT with respect to ORMR.  In particular:
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and
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The composite operation 
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may be reduced to a direct operation in affine form as follows:
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where
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Note that rotation matrix
[image: image22.wmf]ST

T

may determined directly from specification rotations for ORMS and ORMT using Equation (10.2):   

	
	
[image: image23.wmf]www

www

www

=-

=-

=-

ST, 1SR, 1TR, 1

ST, 2SR, 2TR, 2

ST, 3SR, 3TR, 3



	 MACROBUTTON MTPlaceRef \* MERGEFORMAT (10.9)



As a consequence, if the difference (Equation (10.9)) between the specified rotation parameters ORMS and ORMT are sufficiently small, Equation (7.4) (or equivalently, the Bursa-Wolfe equation (see Annex B) applies.  If the rotation parameters are equal,
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is the identity matrix, and if 
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, HST simplifies to a translation of the origin:
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10.3.2 Dynamic ORM realizations for a single object

If ORMS is a dynamic ORM realization for a 3D spatial object, and if t is a time instant (in a valid interval of time for ORMS) in a specified temporal coordinate system, ORMS(t) shall denote the ORM realization ORMS at time t, and 
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shall denote the transformation from the embedding of ORMS(t) to the embedding of ORMR, the object fixed reference ORM realization for the object.  If the transformation 
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 can be determined, it is an affine operation with a unitary rotation matrix.   If ORMT is object fixed, 
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If ORMT is dynamic, and if 
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is defined for t in the same time scale, 
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EXAMPLE 1     ORMS(t) is the ORM_EARTH_INTERTIAL_J2000r0 ERM at UTC time t.  ORM​R is the Earth reference ORM realization ORM_WGS_1984.  ORMS(t) and ORMR share the same embedding origin, so that the 
[image: image36.wmf](
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transformation is a (rotation) matrix multiply operation (without vector addition).  The matrix coefficients for selected values of t account for polar motion, Earth rotation, nutation and precession.  Predicted values for these coefficients are computed and updated weekly by the International Earth Rotation Service (IERS)[IERS]. (See 7.6.4.2.)  
10.3.3 Relating ORM realizations for different objects

If 3D spatial object S exists in the space of a 3D spatial object R at time t in a specified temporal coordinate system and if ORMS is an ORM realization of an ORM for object S, and if ORMR is the reference ORM realization for object R, 
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shall denote the transformation from the embedding of ORMS(t) to the embedding of ORMR.  If the transformation 
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 can be determined, it is an affine operation with a (scaled) unitary rotation matrix.  

EXAMPLE 2     ORMS is an ORM realization for the space shuttle (as a spatial object) based on its geometric symmetries.  ORM​R is the Earth reference ORM realization WGS84.  When in orbit at time t, 
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transforms shuttle positions to WGS84 positions.

The transformation can also be static 
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.  This is the case, for example, when a ORM realization for an abstract object, such as an engineering model, is to be instantiated in a fixed position in the real space of a celestial object.

10.4 Operations on SRF representations of spatial positions

10.4.1 Changing the SRF representation of a spatial position

If SRFS and SRFT are two object-fixed SRF instances for a spatial object and if p is a position in the space of the object that is a valid position for both SRF instances, expressing 
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, the SRFT coordinate representation of p, in terms of 
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, the SRFS coordinate representation of p, is an operation on the SRF pair (SRFS, SRFT). The most general form of the operation is:
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where:
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See Figure 10.2.
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Figure 10.2 — Change of SRF representation

Equation (10.13) in known in the literature as the Helmert Transformation when HST is approximated with the Bursa-Wolfe equation.

EXAMPLE 3     If SRFS and SRFT are two Celestiodetic 3D SRFs for the same spatial object, Equation 
(10.13)

 effectively converts longitude, latitude, and ellipsoidal height of a point p between the two oblate spheroid RD class instances of the corresponding ORM realizations,  GOTOBUTTON ZEqnNum462541  \* MERGEFORMAT .  

NOTE     In the literature a transformation between two geodetic SRFs is known as a horizontal datum shift.  A number of numerical approximations implementing this operation with fewer computations have been published in the literature.  When ORMT is the Earth reference ORM (WGS84), a widely used approximation for the 
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 operation, which assumes zero rotations, is the Standard Molodensky transformation formula [83502T]:
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where:
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Equation (10.13) may not be defined for all values of 
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An SRF class instance SRFT optionally defines a valid region 
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and optionally an extended valid region 
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(see 8.2.2.4).  If 
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where:
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In the case for which the SRFs are not both object fixed  and/or are for different spatial objects, if the transformation 
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If the seven binding parameters of ORMS and ORMT match, then 
[image: image72.wmf]SR
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is the identity operation and Equation (10.13)  simplifies to:
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EXAMPLE 4     If SRFS is a surface celestiodetic SRF and SRFT is the celestiodetic 3D SRF for the same ORM (ORMS= ORMT), Equation 
(10.21)

 effectively promotes the SRFS surface coordinate  GOTOBUTTON ZEqnNum940034  \* MERGEFORMAT  to the SRFT 3D coordinate 
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The promotion operation converts a coordinate
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in a surface celestiodetic SRF (or a map projection SRF), to a celestiodetic 3D SRF (or, respectively, the corresponding augmented map projection SRF)  for the same ORM, by setting the 1st and 2nd coordinates of 
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c

to the 1st and 2nd coordinates of 
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and setting the 3rd coordinate, ellipsoidal height, to 0.  Coordinate promotion is a special case of Equation (10.21).

EXAMPLE 5     Reversing the roles of source and target SRFs in Example 4, if SRFS is a celestiodetic 3D SRF and SRFT is the (induced) surface celestiodetic SRF for the same ORM, Equation 
(10.21)

 is not defined for  GOTOBUTTON ZEqnNum940034  \* MERGEFORMAT , unless
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.  Equivalently, only coordinates of the form 
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.  Coordinates in SRFS that are not on the oblate spheroid (or sphere) RD instance surface, can be projected to the surface along a coordinate curve by setting GOTOBUTTON ZEqnNum162632  \* MERGEFORMAT .

The truncation operation converts a coordinate
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in a celestiodetic 3D SRF (or a augmented map projection SRF), to a surface celestiodetic SRF (or, respectively, the corresponding map projection SRF) for the same ORM, by setting the 1st and 2nd coordinates of 
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to the 1st and 2nd coordinates of 
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.  The truncation operation does not preserve spatial position, unless 
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10.4.2 LTP SRF to LTP SRF cases

SRFS and SRFT are two local tangent plane SRFs (see Table 8.10) with oblate spheroid (or sphere) ORM realizations ORMS and ORMT.  The SRF pair operation on 
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, is determined by substituting the topocentric Euclidean 3D CS (see Table 5.9) generating function 
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and inverse generating function 
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in Equation (10.13).  If vectors 
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are the CS binding parameters for a local tangent plane SRF, Equation 
(10.22)

 expresses  GOTOBUTTON ZEqnNum574096  \* MERGEFORMAT as affine operation:
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where:
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The inverse generation function is expressed as:
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If vectors 
[image: image95.wmf]SSSTTT

,, and ,, 

rstrst

are the CS binding parameters for SRFS and SRFT respectively (see Table 8.10), Equation (10.13)  specializes to:
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In the case that the seven binding parameters of ORMS and ORMT match, Equation (10.21) specializes to Equation (10.26):
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where:
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10.4.3 Object fixed map projection SRF and celestiodetic SRF cases

The CS generating function G for a map projection based SRF is implicitly defined by the geodetic generating function GGD for the oblate spheroid or sphere RD of the SRF ORM realization, and by the map projection mapping equations 
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If SRFS is a map projection based SRF with oblate spheroid ORMS, and if SRFT is a map projection based SRF with oblate spheroid ORMT,  Equation (10.13) expands to:
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for:
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If the seven binding parameters of ORMS and ORMT match, 
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H

is the identity transformation and Equation (10.29) simplifies to:
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Furthermore if ORMS = ORMT, 
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and Equation (10.31) simplifies to:
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If SRFS is a map projection, and SRFT is the corresponding augmented map projection based on the same ORM, then Equation (10.32) is equivalent the to the promotion operation (see 10.4.1).

If SRFT is a celestiodectic SRF class instance and ORMT = ORMS Equation (10.21) simplifies to:
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Similarly, if SRFS is a celestiodectic SRF class instance and ORMT = ORMS Equation (10.21) simplifies to:
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More generally, if SRFT is a non-map projection SRF, Equation (10.13) specializes to:
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Equation (10.21) specializes to:
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In the reverse direction, if SRFS is a non-map projection SRF, Equation (10.13) specializes to:
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Equation (10.21) specializes to:
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10.5 Operations on SRF representations of spatial direction

10.5.1 General specification of directions

In position-space R3 a direction is unambiguously specified by a normalized vector. The direction specified is translation independent.  This is illustrated by lines through points in a given direction n (see A.6 Example 5).  All such lines are parallel.  This translation invariance carries over to the coordinate-space of a linear CS, but not to other CSs with vector space structure.  For example, an augmented map projection inherits the vector space structure of coordinate-space R3, but the “up pointing” vector n = (0, 0, 1) points in different spatial directions (in position-space) depending on the map location from which n is viewed.  In Figure 10.3, distinct position points p and q on the spheroid surface are projected to augmented map coordinates (s, t, 0) and (u, v, 0).  Starting at these map coordinates, the coordinates one unit away in direction n are (s, t, 1) and (u, v, 1) respectively.  In an (ellipsoidal height) augmented map projection, these coordinates correspond to the position-space points p’ and q’.  The direction of p’ from p is never the same as the direction of q’ from q.  In addition, as noted in 5.4.6.2, augmented map projections are not vertically conformal, so that angular relationships of spatial directions are generally not preserved by augmented map projections.  Even a linear CS will not preserve angular relationships between directions unless the CS is also orthonormal.
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Figure 10.3 — Coordinate-space and position-space directions compared

Curvilinear CSs do not have spatially linear vector space structure so that there in no apparent way to specify a direction with curvilinear coordinates. 

In an SRF equipped with an orthonormal CS, such as a celestiocentric SRF or a local tangent plane SRF, a direction is specified by a normalized vector.  In this International Specification, the direction vector must be associated with a reference position to support CS conversions to other (non-orthonormal) SRFs.

A uniform specification for directions in a SRF with non-orthonormal CS requires both a reference position for the direction and an SRF with an orthonormal CS to express the normalized direction vector in the same object-space. In the case of curvilinear SRFs that is not based oblate spheroid ORM realization, directions shall be specified as a normalized vector in the celestiocentric SRF instance based on the same ORM, with a nominal celestiocentric reference position of 
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.  This is the case for the equatorial inertial SRF class and other spherical CS based SRF classes.  In a spherical CS or azimuthal spherical based SRF, the SRF coordinates of a position on the unit sphere are equivalent to (convert to) a celestiocentric unit vector.

In the case of a non-orthonormal SRF based on a oblate spheroid ORM realization, this International Specification specifies a unique local tangent plane SRF using the same ORM and determined by the reference location.  This associated SRF is the canonical local tangent plane XE "canonical local tangent plane"  (CLTP) for a given reference position.   

10.5.2 Canonical local tangent plane (CLTP)

The CLTP is defined for the following SRF classes:

a Celestiodetic 3D, and

b all augmented map projection based SRFs.

In the Celestiodetic 3D case, the reference position coordinates 
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 is associated to an LPT  SRF with LTP SRF class parameter values 
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.  The CLTP Y-axis points in the direction of the tangent vector of the latitude coordinate curve at the LTP origin
[image: image118.wmf]lf
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 and the CLTP Z-axis points in the directions of the ORM oblate spheroid RD surface normal at that point.

In the case of an augmented map projection based SRF, the reference position converts to a unique celestiodetic 3D position for the same ORM.  The CLPT is the CLPT defined for that celestiodetic 3D position as above.  Note that the direction vector (0, 1, 0) has map azimuth equal to (, the convergence of the meridian  (see 10.6.3) at the CLPT origin point.  Also, the direction vector (0, 0, 1) points upwards with respect to the reference position.  In a conformal map projection, other map vertical angles will not correspond to the associated CLTP vertical angles, unless the map vertical scale is equal to the point scale at the CLTP origin.

10.5.3 Changing the representation of directions

There are four cases of changing a direction vector
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 referenced to coordinate position
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in SRFS to its corresponding representation 
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 referenced to coordinate position
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in SRFT when SRFS and SRFT are two local tangent plane and/or celestiocentric object fixed SRF class instances for the same object.  

In the first case, both SRFS and SRFT are both celestiocentric.  In this case
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and
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G

are both the identity operator (see Table 5.8).  Equation (10.13) specializes to:
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The direction of vector
[image: image126.wmf]S

v

 is translation invariant and is only affected by matrix multiplication in Equation (10.39):
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In the second case, SRFS is a local tangent plane  SRF and SRFT is a celestiocentric SRF.  In this case 
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 and 
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is the identity operator.  In the notation of Equation (10.22), Equation (10.13) specializes to:
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If 
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is the local tangent plane origin, Equation (10.41) reduces to:
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The direction of vector
[image: image133.wmf]S

v

 is translation invariant and is only affected by matrix multiplication in Equation (10.41):
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The third case reverses the second case types of SRFS and SRFT.  SRFS is a celestiocentric SRF and is a local tangent plane  SRF.  In this case:
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The direction of vector
[image: image136.wmf]S
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 is translation invariant and is only affected by matrix multiplication in Equation (10.44):
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In the fourth case, both SRFS and SRFT are a local tangent plane SRF:
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The direction of vector
[image: image139.wmf]S
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 is translation invariant and is only affected by matrix multiplication in Equation (10.46):
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In all four cases, the unit length of the direction vector is preserved if 
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. If not, the resultant 
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 shall be normalized. 

If ORMS = ORMT or, more generally, if the seven binding parameters match, 
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is equivalent to the identity matrix so that this term does not appear in the Equation (10.39) through Equation (10.47).

In the case of celestiodetic and (possibly augmented) map projections, the direction vector v is a vector in a CLPT associated to the reference position 
[image: image144.wmf]c

. No conversion is needed between celestiodetic and/or (possibly augmented) map projections based on the same ORM.  Conversion to or from celestiocentric is covered by the second or third case above because CLPT is a special case of local tangent plane.

10.6 Distance between two points in a celestiodetic SRF

10.6.1 Euclidian distance

For a three dimensional orthonormal coordinate system the Euclidean distance d between two points (x1, y1, z1) and (x2, y2, z2) is given by
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10.6.2 Arc length of a surface curve

Since the surface in this case is an OBS it is smooth (see A.6.1). Two points ((1, (1) and ((2, (2) lying on the OBS can be connected by a smooth curve that has an arc length (see A.7.3). For an OBS the arc length s between the two points is given by,
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The dependency of the longitude on latitude depends on the particular simple curve connecting the two points.

10.6.3 Geodesic, a surface curve of minimal arc length

A geodesic is the surface curve with minimum arc length curve (see A.7.3).  For two points ((1, (1) and ((2, (2) lying on an OBS, l, the geodesic distance XE "geodesic distance"  between the points [PEAR] is given by
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This is an elliptic integral and the development of approximation equations for l has been the subject of much research. There are approximation formulas for the short length case case where  l≤200 km, for the medium length case where  l≤1000 km and for the long lines case where the points are antipodal or near antipodal. Two points on the OBS are exactly antidpodal when  |((2-(1)| = ( and (1=-(2. There are also special cases when the two points are both on the equator of the OBS. A thorough exposition of geodesic distance approximations is given in [RAPP1], [RAPP2].

10.6.4 Angle between smooth surface curves on an OBS 

The angle between two smooth curves lying on an OBS at a point lying on both curves is defined in A.7.1.3.

10.7 Directions on an oblate spheroid: Azimuth and convergence of the meridian

10.7.1 Celestiodetic azimuth

In this International Standard, celestiodetic azimuth  XE "celestiodetic azimuth" is defined as a generalization of the geodetic azimuth discussed in [RAPP1] [RAPP2]). 
For an oblate spheroid, a geodesic, in general, does not lie completely in any single plane [RAPP1] [RAPP2]. Define the celestiodetic azimuth of p2 from p1 as the angle 12  at p1 from the meridian through p1 to the geodesic (see Figure 10.4). The range of an azimuth is by convention [0, 2() and is positive clockwise from the meridian to the geodesic. The definition and conventions apply to points in both hemispheres.
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Figure 10.4 — Celestiodetic azimuths (12 from P1 to P2 and (34 from P3 to P4

Understanding the definition of azimuth is important for coordinate conversion and other spatial operations. On a sphere, a geodesic between points p1 and p2 is an arc of a great circle connecting p1 and p2. The problem of computing the angles of a spherical triangle given its vertices can be solved in closed form but approximations to the exact celestiodetic azimuth may be used to reduce processing time or to otherwise simplify the computation. In the general case of an oblate spheroid, the problem of computing the angles of an elliptical triangle usually does not have a closed solution. Several different approximations are commonly used. Note that in the definition of celestiodetic azimuth both points must be on the surface of the oblate spheroid (or sphere). If one or more of the two points are not on the surface, the effect of a non-zero ellipsoidal height must be accounted for [RAPP1] [RAPP2]. The celestiodetic azimuth geometry is depicted for point pairs in both hemispheres in Figure 10.4.
10.7.2 Map azimuth

In a map projection CS, the map azimuth from a coordinate point p1 to a coordinate point p2 is defined as the angle from the v-axis (map-north) to the (straight) line in map coordinates connecting p1 to p2.  In general, the map azimuth will differ in value from the celestiodetic azimuth of the corresponding points on the oblate spheroid (or sphere). For example, if p2 is directly map-north of p1 (it has a larger v-coordinate), then the difference in map azimuth from (celestiodetic) azimuth is approximated by the convergence of the meridian if the points are sufficiently close together. 

10.7.2.1 COM introduction

The convergence of the meridian XE "convergence of the meridian"   (, at a point in a map projection is the angle from the northing axis (v-axis) to the projection of the meridian curve through the point on the map plane. In principle, this value may be computed as the arctangent of the slope of the meridian line at the point.  For some map projections, the mapping equations are not in closed form so that approximate numerical formulations are required. These formulations of COM vary according to the particular map projection CS and may specified as a function of either map coordinates, or geodetic coordinates or both. A typical geometry is shown for the transverse Mercator SRF in Figure 10.5.
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Figure 10.5 — Convergence of the meridian

10.7.3 Scale factor and point scale

The scale factor of a map projection is used in precise direction and distance calculations when using map projections (see 5.3.1). The scale factor XE "scale factor"  of a map projection is the ratio of coordinate-space arc length along a differentially small line in the coordinate-space of a map projection to the corresponding position-space arc length. Scale factor depends on both the location of the point and on the direction of the line along which arc length is being measured.  If the scale factor of a map projection is independent of the direction of the line and depends only on the location of the point, it is a point scale XE "point scale" . In a conformal map projection a scale factor is a point scale.

10.7.4 Mercator map projection

The Mercator map projection is conformal see Table 5.28. Meridians on the OBS project as straight lines that satisfy equations of the form U=a constant. Equally spaced meridians project to evenly-spaced straight lines orthogonal to the U-axis. Parallels on the OBS project to straight lines orthogonal to the projected meridians and satisfy equations of the form V = a constant. Evenly spaced parallels on the OBS project to unevenly spaced parallels on the projection. The spacing of these parallels increases with distance from the U-axis. 

10.7.4.1 Convergence of the meridian

Since all meridians of the OBS, the convergence of the meridian is given by 
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10.7.4.2 Point scale

The map projection is conformal so that the scale factor and point scale are the same and are given by,
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where all the symbols are defined in Table 5.28. When the OBS is a sphere the point scale simplifies to
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10.7.5 Oblique Mercator map projection

The oblique Mercator map projection along with the notation used is defined in Table 5.29.

10.7.5.1 Convergence of the meridian

Convergence  of the meridian can be found from
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The notation is defined in Table 5.29 and the formulation was derived from the basic definition of convergence of the meridian.

10.7.5.2 Point scale

The oblique Mercator map projection is conformal so that the scale factor and point scale are the same and are given by,
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10.7.6 Transverse Mercator map projection

10.7.6.1 Convergence of the meridian 

The transverse Mercator map projection and the notation used are defined in Table 5.30. The convergence of the meridian for a celestiodetic point ((, () is given in [THOM] using the notation defined in Table 5.30 as
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10.7.6.2 Point scale

The transverse Mercator map projection is conformal so that the scale factor and point scale are the same, and the point scale is given by,
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where
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When the OBS is a sphere the point scale is given by,
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10.7.7 Lambert conformal conic map projection

10.7.7.1 Convergence of the meridian

Using the notation of Table 5.31, the convergence of the meridian is given by
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where the cases of one specified standard latitude or two standardized latitudes are distinguished by
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10.7.7.2 Point scale

The Lambert conformal conic map projection map projection is conformal so that the scale factor and point scale are the same.  The notation for the Lambert conformal conic map projection is given in Table 5.31 and the point scale is given by
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where the cases of one specified standard latitude or two standardized latitudes are distinguished by
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10.7.8 Polar stereographic map projection

10.7.8.1 Convergence of the meridian

With the notation used in Table 5.32, the convergence of the meridian for the stereographic map projection is given by 
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10.7.8.2 Point scale

Using the notation of Table 5.32 the point scale is given by
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10.7.9 Equidistant cylindrical map projection

10.7.9.1 Convergence of the meridian

The meridians of the equidistant cylindrical map projection are straight lines perpendicular to the v-axis of the map projection coordinate system so that the convergence of the meridian, ( = 0.
10.7.9.2 Point scale

The equidistant cylindrical map projection is not conformal so there are two scale factors. One of the scale factors in the direction of the u-axis is denoted by k while the scale factor perpendicular to the u-axis is denoted by j. Using the notation of Table 5.33 the scale factors are given by
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10.8 Instancing abstract space positions in the space of another object

Engineering designs and other abstract spatial information often serve as models for real world realizations. 

EXAMPLE     A terrestrial survey establishes the origin of an LTP SRF. A building plan in (scaled) abstract Euclidean 3D SRF coordinates are identified as LTP coordinates 
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is a scale factor.  More generally, abstract models are rotated or otherwise transform by a unitary operator before the identification. The identification realizes an instance of an abstract space position (or direction) in celestial object space.

This conversion of a coordinate
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If SRFT is an LTP 3D SRF with CS parameters 
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Where the matrix 
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Similarly, if 
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EDITORS NOTE: This is a temporary table of index entries that is used to create the master index. It will eventually be removed:



canonical local tangent plane
179

celestiodetic azimuth
182

convergence of the meridian
183

geodesic distance
182

point scale
184

scale factor
184



	© ISO 2002 – All rights reserved
	1


	188
	© ISO/IEC 2003 – All rights reserved


	© ISO/IEC 2003 – All rights reserved
	189



_1113808977.unknown

_1113809057.unknown

_1113809092.unknown

_1113809110.unknown

_1113809726.unknown

_1113809826.unknown

_1113809850.unknown

_1113817205.unknown

_1119452973.unknown

_1113809866.unknown

_1113809838.unknown

_1113809784.unknown

_1113809805.unknown

_1113809758.unknown

_1113809118.unknown

_1113809127.unknown

_1113809131.unknown

_1113809134.unknown

_1113809136.unknown

_1113809129.unknown

_1113809123.unknown

_1113809125.unknown

_1113809121.unknown

_1113809114.unknown

_1113809116.unknown

_1113809112.unknown

_1113809101.unknown

_1113809105.unknown

_1113809107.unknown

_1113809103.unknown

_1113809097.unknown

_1113809099.unknown

_1113809094.unknown

_1113809075.unknown

_1113809084.unknown

_1113809088.unknown

_1113809090.unknown

_1113809086.unknown

_1113809079.unknown

_1113809081.unknown

_1113809077.unknown

_1113809066.unknown

_1113809071.unknown

_1113809073.unknown

_1113809068.unknown

_1113809062.unknown

_1113809064.unknown

_1113809060.unknown

_1113809020.unknown

_1113809040.unknown

_1113809049.unknown

_1113809053.unknown

_1113809055.unknown

_1113809051.unknown

_1113809044.unknown

_1113809046.unknown

_1113809042.unknown

_1113809031.unknown

_1113809035.unknown

_1113809037.unknown

_1113809033.unknown

_1113809027.unknown

_1113809029.unknown

_1113809022.unknown

_1113809003.unknown

_1113809011.unknown

_1113809016.unknown

_1113809018.unknown

_1113809014.unknown

_1113809007.unknown

_1113809009.unknown

_1113809005.unknown

_1113808990.unknown

_1113808994.unknown

_1113808999.unknown

_1113808992.unknown

_1113808981.unknown

_1113808983.unknown

_1113808979.unknown

_1113808898.unknown

_1113808942.unknown

_1113808960.unknown

_1113808968.unknown

_1113808973.unknown

_1113808975.unknown

_1113808970.unknown

_1113808964.unknown

_1113808966.unknown

_1113808962.unknown

_1113808951.unknown

_1113808955.unknown

_1113808957.unknown

_1113808953.unknown

_1113808946.unknown

_1113808949.unknown

_1113808944.unknown

_1113808920.unknown

_1113808933.unknown

_1113808938.unknown

_1113808940.unknown

_1113808936.unknown

_1113808929.unknown

_1113808931.unknown

_1113808922.unknown

_1113808909.unknown

_1113808915.unknown

_1113808918.unknown

_1113808913.unknown

_1113808902.unknown

_1113808907.unknown

_1113808900.unknown

_1113808863.unknown

_1113808880.unknown

_1113808889.unknown

_1113808893.unknown

_1113808896.unknown

_1113808891.unknown

_1113808885.unknown

_1113808887.unknown

_1113808883.unknown

_1113808872.unknown

_1113808876.unknown

_1113808878.unknown

_1113808874.unknown

_1113808867.unknown

_1113808869.unknown

_1113808865.unknown

_1105360542.unknown

_1113808846.unknown

_1113808854.unknown

_1113808859.unknown

_1113808861.unknown

_1113808856.unknown

_1113808850.unknown

_1113808852.unknown

_1113808848.unknown

_1113808837.unknown

_1113808841.unknown

_1113808843.unknown

_1113808839.unknown

_1113808832.unknown

_1113808835.unknown

_1113808830.unknown

_1113806815.unknown

_989585306.unknown

_993128938.unknown

_993278175.unknown

_993293958.unknown

_1104921165.unknown

_993284029.unknown

_993284677.unknown

_993189021.unknown

_993276562.unknown

_993277400.unknown

_993228155.unknown

_993188024.unknown

_991908781.unknown

_991911497.unknown

_992539273.unknown

_989589491.unknown

_989589894.unknown

_989585902.unknown

_987497658.unknown

_987497671.unknown

_989492949.doc


 34







geodesic



p3p4







p3







 P4







p1







 p2







 12







geodesic



P1P2







meridian through p1







meridian



through p2







equator







north pole
















_989576216.unknown

_987497678.unknown

_987497681.unknown

_987497684.unknown

_987497674.unknown

_987497665.unknown

_987497668.unknown

_987497661.unknown

_987497644.unknown

_987497651.unknown

_987497655.unknown

_987497647.unknown

_987497637.unknown

_987497640.unknown

_987497601.unknown

