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Annex I
(informative)

Conformance testing for spatial operations

Introduction

This annex provides guidelines that may be useful for developing conformance requirements and conformance tests for implementation of the concepts specified in this International Standard including, but not limited to, the API specified in Clause 11.

[Editors Note: Remove TRS/TRDS and move appropriate material to the conformance clause] 

I.1 Error approximation

Specifying the quality of spatial operations requires error approximation. The meaning of “error” depends on the context and application domain. Potential sources of error in spatial operations include formulation error, approximation error, round-off error, truncation error and other errors associated with implementing the spatial operation. Errors of this nature should not be confused with errors arising from modelling the true shape of a spatial object (celestial or abstract) by an approximate shape. In this International Standard, an ORM used to approximate the shape of an object, is assumed exact. How well an ORM approximates the shape of a celestial object is outside the scope of this International Standard.

A spatial operation specification defines the domain and range as well as providing a functional specification of how each value in the domain is converted into a value in the range. The functional specifications are mathematical functions in one or more variables. These functional specifications include a set of rules related to the appropriate ORM, bindings to the CS, and instances related to a particular celestial object.

Spatial operations baseline

Each spatial operation specified in Clause 10 has a theoretically exact specification as a mathematical function. These exact specifications fall into four basic categories:

a a finite sum of elementary mathematical functions,

b a finite sum of quadratures, 

c an infinite iterative process, or

d an infinite power series.

In practice, implementing a specification of form (c) or (d) requires a termination in a finite number of steps or after a finite number of terms are computed. 

Specifications should be well posed in the mathematical sense. There may be several equivalent specifications for the same operation. Unless the domains of the functions involved are well specified, uncertainties in the range of the functions may result. Specifications in this International Standard are exact. These exact specifications are the standard against which any implementation of this International Standard must be compared.

Implementations

This International Standard may be implemented in many different ways. Potential implementations include:

a manual computation without using computers,

b fixed-purpose hardware, or

c software executing on general-purpose digital computers ranging from embedded processors to large-scale computer systems.

Given the wide range of possible implementations and the differing requirements of application domains, conformance requirements in this International Standard provide latitude for conformance at different levels.

A fundamental discriminator for level of conformance verification is the numerical difference between a result obtained from the mathematical specifications in Clause 10 and the corresponding result obtained by an implementation.  A reference implementation of the specifications in TRDSClause 10

 generates values against which the results of other implementations may be compared. A well-defined and formally specified test plan and a set of test procedures for both certifying the reference implementation and for testing an implementation are needed to accomplish this. In these test procedures, the reference implementation will be used to generate an appropriate set of test data points and results. A data set produced by the reference implementation to support conformance testing is called a test reference data set () XE "test reference data set " . The type of data in a TRDS depends on the spatial operation being evaluated.

Quantities in the TRDS are called test points. Each implementation to be tested shall have provisions for recording the information needed to compare to the TRDS in support of conformance testing. This set of output data is called a test data set (TDS) XE "test data set " . The reference implementation may use a computer implementation to generate a TRDS. Alternatively, the TRDS may be constructed using other computational means. Similarly, the TDS may be computer generated or be in hard copy format.

Fundamental measure of conformance

There are several measures that are discussed in Clause 13. A fundamental measure is the numerical difference between the individual data points of the TRDS and the corresponding data points of the TDS for a particular implementation. For this purpose, the data points obtained from the TRDS are taken to be the exact or true data points. Consequently, the difference between the data points of a TRDS and the TDS of a particular implementation is referred to as an error. There are many different error measures that will be needed depending on the nature of the spatial operation and the particular data involved.

The TRDS must be developed using sufficiently accurate arithmetic precision. When the TRDS is computer generated, the reference implementation is assumed to perform computations in double precision as specified in IEEE 754. This means that the mantissa of a floating point number is 52 bits, which corresponds to about 15,5 decimal digits of precision (see IEEE 754). If the TRDS is obtained by other computational means, at least 15,5 decimal digit precision must be maintained. Particular implementations may not have to meet this requirement on precision but developers of the system should understand that use of lower precision arithmetic could seriously degrade computational accuracy when dealing with spatial operations. 

Error metrics for spatial operations

An error metric is a function that allows data points in the TRDS to be mathematically compared to corresponding data points in the TDS to determine a numerical difference between them. The value of the error metric is the error between the data points that are being compared. There are two fundamental types of errors: absolute and relative. Absolute errors are positive and normally have units of measure associated with them. Relative errors are numerical ratios and may be any real number. Generally, relative errors are interpreted in terms of percentages by multiplying the absolute value of the relative error by 100. When the data values are real numbers, with x in a TRDS and the corresponding value xa in a TDS then the absolute error E is given by E = |x-xa| and E and x have the same units of measure. Similarly, the relative error Er is given by Er = (x-xa)/x whenever x is not zero. The absolute value of Er multiplied by 100 yields the percentage error.

When the values being compared are in terms of the same units of measure, there are standard error measures that can be used, usually the Euclidean metric. Sometimes the data that is being compared involves a mixture of measurement units, for example metres and radians, and the error metric must be designed to handle such cases. Since error metrics are dependent on the spatial operation being evaluated, specific error metrics are given in Clause 10

 for each operation. To illustrate the way that mixed measurements are treated, and the generalization of the error metric to more than one dimension, examples are useful.

[Editors note: definition by example is inappropriate in an IS]

EXAMPLE 1
Let (x, y, z) be a point in a celestiocentric CS and (xa ,ya, za) be the corresponding point in a TDS. The error metric is taken to be the Euclidean metric and the value of the metric is the Euclidean distance between the two points. That is,
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and the error E is an absolute error. If the relative error is required, it is
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EXAMPLE 2
Celestiocentric to celestiodetic coordinate conversion provides an example of how a mixture of angular and distance error components can be treated. Two of the coordinates, celestiodetic latitude ( and longitude (, are in radians and ellipsoidal height his in metres. Let (x, y, z) be a given point in the celestiocentric CS and (x, y, z) be converted to a corresponding point ((, (, h) in the celestiodetic CS and is in the TRDS. Suppose that (x, y, z) is converted to a corresponding point ((a, (a, ha) in the celestiodetic CS and is in the TDS. The problem is to find a way of comparing the point in the TRDS with the point in the TDS.

In Clause 10

, exact relations are given for converting a point in a celestiodetic CS to a point in a celestiodetic CS. Using these, the point ((a, (a, ha) can be transformed exactly into a corresponding, approximate point in celestiocentric coordinates. That is,
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where ( is the eccentricity of the oblate spheroid (or sphere) RD. The value of (x, y, z) has not changed but now there is an alternate representation of the point ((a, (a, ha) in the TDS, namely (xa, ya, za), that has no added error because the equations are exact. This permits the use of the Euclidean metric (see Annex A) to evaluate the absolute error.

Error measure over the TRDS and TDS sets

The previous clause develops the concept of an error metric that can be used to compare data points in the TRDS and TDS. It is desirable to have the number of data points in the TRDS and the TDS to be relatively large and uniformly distributed over the domain of the operation being evaluated. Legacy implementations of coordinate conversions often use a set of test points far too small to properly determine the maximum error in an implementation. If the set is not large and dense enough, critical points, where the implementation is flawed, may be missed. The description of the size of the TRDS and the spatial distribution of values in the TRDS is an important consideration and is operation dependent. Clause 10 contains descriptions of the TRDS specific to each operation. Once the TRDS is specified it is relatively easy to evaluate the appropriate error metric over the whole set of values and to find the maximum error on the TRDS set. This maximum error is used to determine a level of compliance of a particular implementation.

Levels of conformance

A particular implementation should not be required to meet the standard at the highest level if this induces unnecessary complexity and cost penalties. In some applications, users may choose to simplify or approximate the formulations to reduce implementation and computational complexity and in particular to reduce computer processing time. In doing so, they are willing to accept some degradation in accuracy for a particular application domain. 

When the TRDS is not developed by a digital computer implementation, it is impractical to have a continuum of conformance levels. If the TRDS is generated by a computer implementation that has been verified and validated, a continuum of conformance levels could be supported. 

When the performance levels are not continuous, there are a finite number of levels. For example, suppose that there are three such levels, denoted 1, 2, and 3, and that these levels correspond to a 1 millimetre, 1 centimetre and 1 metre maximum error respectively. A conformance statement would be of the form: the candidate implementation conforms to this International Standard at level 3. On the other hand, when the conformance level is continuous, a conformance statement would be of the form: the candidate implementation conforms to this International Standard at a maximum error of 10,5 centimetres.
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