

Sketch-based Terrain Modeling

Sang-Won Ghyme Next-generation Visual Research Division ETRI

0

1

Outline

Known Methods Landform Sketching Terrain Synthesis

New Methods

- Landform Composition
- Land-Outline Sketching

• Special Research

RBF-based Terrain Modeling

Known methods

Landform Sketching

A set of sketch lines

Terrain Synthesis A sketch line + patch comp.

Previous Works of Landform Sketching

Harold: A World Made of Drawings(2000)

Only Silhouette line

A Sketching Interface for Terrain Modeling(2004) Boundary lines and Noise

Landform Sketching (1)

Terrain Sketching(2009) Silhouette Line Sketching First

Landform Sketching (2)

Shadow Line Sketching First

Landform Sketching (3)

Multi-resolution Deformation and Noise Propagation

Landform Sketching (4)

Results

Landform Sketching (5)

Data Format

```
#Header
```

dHeightMap [sPathFile] [nRows] [nColumns]; the reference Height Map nLandforms [n]

#Landform 0
nPoints [n]; number of points of all sketch lines except BP and EP
vBP [fX] [fY] [fZ]; the begin point of all sketch lines
vEP [fX] [fY] [fZ]; the end point of all sketch lines
avSI { [fX] [fY] [fZ], ... }; the silhouette sketch line
avSH { [fX] [fY] [fZ], ... }; the shadow sketch line
avBD { [fX] [fY] [fZ], ... }; the boundary down sketch line
avBU { [fX] [fY] [fZ], ... }; the boundary up sketch line
aiParents [n] { [i] }; index list of parent landforms
aiChildren [n] { [i] }; index list of children landforms

#Landform 1

...

Landform Sketching (6)

Analysis

All points of sketch lines must be in between begin and end point

It is very difficult to combine 3D landforms for a complex terrain

Terrain Synthesis (1)

Terrain Synthesis from DEM (2007)

Sketch Image Input

DEM Image Input

Terrain Synthesis (2)

Feature Line Extraction

Profile Recognition and Polygon-Breaking Algorithm(PPA)

Terrain Synthesis (3)

Feature-based Patch Extraction

Terrain Synthesis (4)

Feature Patch Matching and Placement

Terrain Synthesis (5)

Patch Merging

Overlapped Region Optimal Seam Finding Seam Removing

Terrain Synthesis (6)

Result

Terrain Synthesis (7)

Data Format: Feature Line

```
#Header
```

dHeightMap [sPathFile] [nRows] [nColumns]; the reference Height Map eType [ridge | valley | all]; a type of feature line nConnects [n]

```
#Data
```

```
{ [iX] [iY] [iD], ... }
```

; (iX, iY) is the center point

; (iD) is the direction of connection, has the value [0, 7]

Terrain Synthesis (8)

Data Format: Patch Set

#Header nPatches [n] nPatchSize [n]

#Patch 0
[nEPs] { [iX] [iY], ...}; number of End-Points and list of End-Points
{ [iH], ... }; Height Map of the Patch, Size [nPatchSize*2+1]^2

...

Terrain Synthesis (9)

Analysis

Only 2D sketches are allowed Can control only a shadow line except Silhouette, Boundaries

New methods

Landform Composition

Landform + patch comp.

Land-Outline Sketching

Chain of Land-Outlines

Landform Composition (1)

Situation

Landform has flat surface

• Noise delivers less reality

Goal

Terrain has more reality

Idea

• Use DEM patches

Landform Composition (2)

Process

Landform Generation

Load the reference DEM

Set Region

DEM Patch Composition

Landform Composition (4)

DEM Patch Composition

Without seam removing

With seam removing

Landform Composition (5)

Result

Landform Generation

Land-Outline Sketching (1)

Situation

Landform is too simple to complex terrain

Goal

• More useful method for complex terrain

Idea

• Regard a terrain as a set of primitive shape

Land-Outline Sketching (2)

Land-Primitive Structure

Land-Primitive is a sort of Landform Unit

Land-Outline Sketching (3)

Land-Outline Sketching Concept

Land-Outline is converted into the chain of Land-Primitives

Land-Outline Sketching (4)

Process

Shadow Line Sketching

Silhouette Line Sketching

Convert into Land-Primitives

Land-Outline Sketching (5)

Shadow Line Editing

Land-Outline Sketching (6)

Land-Primitive Editing

One-by-One or Series

Electronics and Telecommunications Research Institute

Land-Outline Sketching (7)

Convert Features into Primitives

Load Feature Lines

Conversion

Land-Outline Sketching (8)

Land-Outline and Land-Primitive Editing

Land-Outline Sketching (9)

Data Format

#Header dHeightMap [sPathFile] [nRows] [nColumns]; the reference Height Map nPrimtives [n]
#Primitive 0
[iX] [iY] [iZ]; position
[iNext]; next pointer to form the chain
[bData]; each bit determine whether next parameter is inherited from the previous
[eType]; type of feature { Ridge Valley }
[fSize]; bottom radius
[fTheta] [fPhi]; normal vector
[fGain]; gain value to control the shape of form

RBF-based Terrain Modeling (1)

Someone said to me, "Land-Primitive looks like a RBF"

what is RBF? New research begins

RBF-based Terrain Modeling (2)

Reconstruction and Representation of 3D Objects with RBFs (2001)

Using RBF-based Implicit Surfaces convert point cloud into mesh

RBF-based Terrain Modeling (3)

RBF node reduction

Original: 544,000 point cloud is Represented by 80,000(14.7%) to a max error 0.0005

RBF-based Terrain Modeling (3)

RBF-based Terrain Modeling

Map Size: 259 X 203, Nodes: 52577

RBF-based Terrain Modeling (4)

Highlights

- Terrain Data Compression (under experiments)
 - The performance is depended on the choice of RBF
- High-weighted RBF nodes are located on feature lines
 - Land-Outline represents the outline of terrain

RBF-based Terrain Modeling (4)

Data Format

#Header of ArcInfo ASCII grid format

ncols [n]; x size

nrows [n]; y size

xllcorner [f]; x coordinate of most left grid point

yllcorner [f]; x coordinate of most bottom grid point

cellsize [f]; distance between grid points

NODATA_values [i]; flag value to point out no height

#Extended Header

afImprove [fC1] [fC2] [fC3]; low degree polynomial constants to improve accuracy nNodes [n]; number of RBF nodes

#Data

{ [iX] [iY] [iH], ... }

; ([iX], [iY]) is the coordinate of RBF nodes

; ([iH]) is the real height of RBF node

; Order of RBF nodes is important, high-weighted RBF node is placed in the head

Conclusion

- Proposals
 - 3D landform data format
 - Terrain feature line data format
 - Terrain patch composition data format
 - Land-Primitive data format
 - RBF-based terrain model data format