OKTAL-SE

EO, RF, GNSS the sensor simulation company

www.oktal-se.fr

© OKTAL-SE-2018,, page: 1 - www.oktal-se.fr

OKTAL-SE Corporate overview

OKTAL company history

1986 → 1989

- Jean Latger + Thierry Cathala + 6 founders from Thalès Training Simulation (Thomson)=> Sogitec – Maya/Wavefront – OKTAL
- Design of first generation of 3D Graphic Boards
 << Nvidia << Silicon Graphics << Evans & Sutherland

$1989 \rightarrow today$

- **OKTAL** birth (Jean Latger + Thierry Cathala)
- Design of first 3D terrain modelling tools
- Design of first Image Generators (SUN then SGI)
- Railway simulation (RT)
- Automotive simulation (RT)
- RT simulation for Town & Country Planing
 - Creation of the OKTAL Environment subsidiary
 - Creation of the **OKTAL Japan** subsidiary
- Defense simulation (RT & NRT) => First approach of SEDRIS

$2001 \rightarrow today$

• **OKTAL Synthetic Environment** birth (Jean Latger + Thierry Cathala)

AVS: OKTAL-SE sister company for ADAS

Autonomous Vehicle Simulation company (July 2017): Simulation for Advanced Driver Assistance Systems

OKTAL-SE: a nice opportunity for SE-WB

Synthetic Environmen

© OKTAL-SE-2018,, page: 4 - www.oktal-se.fr

OKTAL Synthetic Environment

Our mission:

To provide COTS software for **physics based sensor simulation** in Visible, Infrared, Radar and GNSS fields.

Our goal:

To be leader within our niche market.

What for ?

User applications

Simulation For Research

- IR/RF missile tracker assessment
- Enhanced Vision System (IR or radar)
- HardWare In the Loop simulation
- GNSS (GPS, Galileo,...) System stimulation

Product lines

High Fidelity Workbench

Sharing Science - Experience & Data

Simulation With Man in the loop

- Training simulation
- All weather conditions piloting
- UAV control station
- War & serious games ...

Fast Image Generator

4 domains & a unique SE

Corporate overview

OKTAL-SE

The offer structure: SE-Workbench

1) Multi Physics: Common Synthetic Environment for EO and RF

2) Accuracy/Speed duality: 2 ways to compute sensor signal on the same SE:

- slowly but precisely (non real time)
- rapidly but with simplification (rapidly)

Corporate overview

OKTAL-SE

SE-Workbench packaging

Several packages are proposed to cover general of specific applications:

SE-Workbench: the new WTS tool

3D Globe Viewer with spectral infrared realtime rendering:

- Source 2D database = refined landcover
- 3D database = built in real time (procedural rendering)

World class customers

Civilian and defence industries that integrate our solutions in complex system with strong technical added value: ONERA Fraunhofer SAFRAN esa anal d'Eballes at its Rectarches Adres European Space Agenc 14 DSO Hanwha AIRBUS Bundeswehr 국 방 과 학 연 구 소 RAFAELO sensing solutions BLUE ORIGIN LIG Nex1 roketsa Orange **BGT** Defence orange

2. French or foreign MODs

through their technical expertise centres and their program services:

•MBDA FR / UK •Dassault Aviation •THALES •SAFRAN / SAGEM •AIRBUS Defence & Space •ROKETSAN •DiehI-BGT •AIRBUS •AIRBUS •AIRBUS Helicopter •LIG Nex1 •Hang Yu Communications •Orange Labs •AVIC

•Hanwha Thales

•RAFAEL

- •DGA/ Management Units
- •BWB / WTD81 Germany
- •FOI Sweden
- ADD South Korea
- •DSO Singapore
- DSTA Singapore

SE-Workbench in the world

2013-14-15-16-17 average **SE-WB orders** (COTS + MT + Form)

© OKTAL-SE-2018,, page: 14 - www.oktal-se.fr

Physical simulation success stories

They make use of the SE-Workbench for development and validation purpose:

- MBDA for the SCALP (Storm Shadow) missile (EO)
- MBDA UK radar on missile program
- SAGEM for the AASM missile (EO)
- MBDA for the ANL (FASGW) missile (EO)
- French DGA for the assessment of surveillance radar interference due to the blades of wind power plant (RF)
- The French DGA as a reference tool in EO domain
- AIRBUS Helicopter for the Tiger Rotorcraft painting characteristics assessment both in visible and Infrared (EO)
- EDA for maritime environment Modelling & electromagnetic signature of surface targets (RF)
- DIEHL-BGT for missile (EO + RF)
- ADD for missile + UAV (EO + RF)
- BWB as a reference tool for EO + RF
- DSO as a reference tool for RF
- FOI as a reference tool for EO + RF
- RAFAEL HWIL-EO and Active EO
- ROKETSAN HWIL EO systems
- TERMA for new SAR concepts assessment

overview Corporate **OKTAL-S**

SE-WORKBENCH philosophy

Real Time vs Non Real Time

Corporate overview OKTAL-SE

3D terrain modeling

© OKTAL-SE-2018,, page: 18 - www.oktal-se.fr

Objects modeling:

- 1) Plugs-in
- 2) Dedicated 3D modelling tools

Physical modeling:

- 1) Materials
- 2) Thermics
- 3) Atmosphere

SE-WORKBENCH: scenario edition

Physical modeling:

- 3D database Trajectories
- Atmospheric data Special effects (clouds, flares, particles systems, plumes, flares, sea...)
- Thermal data IR sensors

*

*

Objects, targets Radars emitters

SE-WORKBENCH philosophy

Real Time vs Non Real Time

3D terrain modeling

© OKTAL-SE-2018,, page: 23 - www.oktal-se.fr

Objects modeling:

- 1) Plugs-in
- 2) Dedicated 3D modelling tools

Corporate overview

OKTAL-SE

Physical modeling:

- 1) Materials
- 2) Thermics
- 3) Atmosphere

Thermal shadows

SE-WORKBENCH: scenario edition

Physical modeling:

- 3D database Trajectories
- Atmospheric data Special effects (clouds, flares, particles systems, plumes, flares, sea...)

IR sensors

Thermal data

*

*

Objects, targets Radars emitters

SE-WORKBENCH: GUI / Python / C API

© OKTAL-SE-2018,, page: 27 - www.oktal-se.fr

Corporate overview

OKTAL-SE

SE-WORKBENCH-EO

Real Time GPU shaders + CUDA

Non Real Time: *Ray Tracing*

SE-WORKBENCH-EO/VC

Spectral Visible Color capability

© OKTAL-SE-2018,, page: 29 - www.oktal-se.fr

SE-WORKBENCH-RF

RBGM radar

SER TR6

Synthetic Environme

SE-WORKBENCH-AEO

Flash imagery Pulsed LASER

6420 ns

6550 ns

6575 ns

SE-WORKBENCH-GNSS

© OKTAL-SE-2018,, page: 32 - www.oktal-se.fr

SE-Workbench: new trend: Deep Learning

OKTAL-SE contribution: using the Synthetic Environment to enrich the source data set

Limitations of "standard approach" in Deep Learning process

Overfitting: due to limited size of training data sets to train an algorithm

Unbalanced training data sets: lack of diversity

Observation locations: difficult to find real images of the same scene from different viewing angle

Multi-sensors: almost impossible to find same scene/time/orientation real images from EO/IR and RF sensors

Tagged images: meta data available via SE-Workbench: pixel distance, identification, contrast, shadows...

Repeatability: for Monte Carlo assessment

OKTAL-SE expectations with interoperability Synthetic Environment Interchange needs:

At target data level ⇒ file conversion (OFLT...) ⇒ SEDRIS

At source data level (at various levels of semantics) ⇒ file conversion (DTED, Shapefile...)
SEDRIS

At terrain modeller work data level ?

At spectral physical data level (EP + RF) **○**?

At procedural level (EP + RF) ?

Current OKTAL-SE interoperability state

Terrain modeller work data

<u>Rules for terrain features</u> (SE-AGETIM)

Current OKTAL-SE interoperability state Terrain modeller work data

Rules for extruded objects (SE-AGETIM-BUILDING)

Current OKTAL-SE interoperability state Terrain modeller work data

Rules for indoor parts (SE-AGETIM-INDOOR)

Current OKTAL-SE interoperability state

Spectral physical data level

Example of a "wall" material

Hierarchical definition of the fact that it is a building, then the building type, then the building part, then the coating, then the color, then the body structure and finally the insulation system

 $\begin{array}{l} \text{Building} \rightarrow \text{Industrial} \rightarrow \text{Wall} \rightarrow \text{ConcreteCoating} \rightarrow \text{White} \rightarrow \text{BrickBody} \rightarrow \\ \text{RockWoolInsulation} \rightarrow \text{PlasterIndoorCoating} \end{array}$

$\textbf{ConcreteCoating} \rightarrow \textbf{White}$			IR Thermol	emissivity, BRDF, transmission,
	7		Roughness	RMS height, correlation height
BrickBody		0,2 m	Thermal EM	conductivity, specific heat, density ε , μ , σ
RockWoolInsulation)	(0,05 m /	Thermal EM	conductivity, specific heat, density ε, μ, σ
PlasterIndoorCoating		0,013 m	Thermal EM	conductivity, specific heat, density ε , μ , σ

Internal temperature back feature

Current OKTAL-SE interoperability state

Witness of the date

Procedural data

On fly buildings footprints extrusion and façades / roofs creation

Tree « seeds » positioning & growing

Trees made of articulations: trunk, main branch, secondary branches, leaves => dynamic (wind)

3D objects instancing

Rock & stone « seeds » positioning & growing

© OKTAL-SE-2018,, page: 39 - www.oktal-se.fr

CONCLUSION

OKTAL-SE has a strong experience in the field of new SE data structure.

OKTAL-SE would like to participate to a standard common definition for:

- Terrain modeller work data
- Spectral physical data
- Procedural data

CONTACTS

OKTAL Synthetic Environment

11 avenue du Lac 31320 VIGOULET AUZIL - FRANCE +33 (0)5 67 70 02 00 Website: www.oktal-se.fr

Contact : <u>contact@oktal-se.fr</u>

CEO: Jean LATGER Sales Director: Nicolas DOUCHIN International sales: Pierre-François PEYRARD, Grégory MOURA France: Pierre NOUBEL

