TCRS—-A Methodology and Tool Set for Specifying Data Content

Jesse Campos, Greg Hull
Science Applications International Corporation (SAIC)
12901 Science Drive, Orlando, Florida 32826
greg.a.hull @saic.com
jessej.campos@sai c.com

Farid Mamaghani
SEDRIS Organization
19223 SE 45" Ct
I ssaquah, Washington 98027
farid@sedris.org

Keywords:
Environmental Data, Interoperability, TCRS, SEDRIS, XML

ABSTRACT: Specifying the requirements for environmental data at the input and output of systems or
applications, and the ability to automatically evaluate and validate the data based on such requirements, is
a key ingredient to successful data interoperability. This paper will describe an innovative and ongoing
devel opment, the Transmittal Content Requirements Specification (TCRS), which addresses this challenge.
TCRSIeverages the SEDRI Stechnol ogies of DRM, EDCS, and SRM to provide a formal methodol ogy for
the expression, and the subsequent evaluation, of environmental data requirements. TCRSis composed of
several key technical components, including a process and methodology for articulating and capturing the
requirements; a complete syntax for expressing the requirements, an XML encoding of the syntax; and
automated tools, such as a parser and evaluator, for validating transmittals that claim conformanceto a
given set of requirements. This paper will provide an overview of the various technical components, and
will highlight examplesin the application of TCRSto real world data sets.

1. [Introduction

SEDRISS technologies provide a robust mechanism for the
representation of environmental data across all domains
and applications. In order to provide these broad
capabilities, five technology components have been
developed. Thesefive technology components are:

The SEDRIS Data Representation Model (DRM)
that supports the full representation of any
environmental data.

The Spatial Reference Model (SRM) that
supports an extensive definition of Spatial
Reference Frames (SRF).

The Environmental Data Coding Specification
(EDCS) that provides complete classification
and attribution for environmental data.

An interface specification, the SEDRIS AP,
which allows the user to develop applications to
consume and produce environmental data.

A binary file format, the SEDRIS Transmittal
Format (STF), specificaly designed for the
efficient storage and access of SEDRIS data.

These SEDRIS technologies provide for a complete and
unambiguous data representation and interchange

capability, but do not directly implement the verification
of data content or the notion of “fit for use”. The
SEDRIS DRM and EDCS provide the framework to
conduct content and applicability analysis. But in order to
specify environmental data requirements, a
complimentary technology, the Transmittal Content
Requirement Specification (TCRS), has been developed
to augment the DRM and EDCS in order to capture such
requirements. The capabilities presented in this paper
describe the methodology for the expression of
environmental data requirements, an XML encoding for
the specification of such requirements, and a toolset for
data verification.

This paper begins by describing the role that TCRS plays
in the interchange of environmental data This will
include inherent problems with current specification
techniques and examples of initial TCRS solutions. The
paper then introduces the current TCRS methodology and
tools for improving interchange. The XML encoding of
TCRS and examples using the syntax will be highlighted.
The paper will include several examples of TCRS
requirements. The future development and enhancement
planswill conclude the paper.

2. Need for TCRS
21 Datarequirements

A TCRS document is a specification of the environmental
data “requirements’ expressed using the SEDRIS DRM,
EDCS, and SRM terminology. A requirement may be
about the semantics of the data, such as which
environmental objects must or must not be present. Or a
requirement may be about the structure or form of
representation that the data may take, such as whether
dataisin gridded or point sample form. Specifying data
requirements allows the evaluation of data based on “fit
for use” criteria for a particular application or set of
applications. The specification provides an “Acceptance
Test” for data, much like acceptance tests for software or
hardware products. However, a common methodol ogy
and a common terminology are required to accomplish
this.

2.2 Specification solutions

Traditionally two mechanisms have been used to capture
requirements. The first is simply to express the
requirements in English, usualy through Word
documents. The second is to develop highly unique,
tailored verification software. The Close Combat Tactical
Trainer (CCTT) Correlated DataBase (CDB) TCRS is an
example of expressing requirements through a Word
document [1]. Environmental data model compliancy
checkers are an example of the TCRS method of writing
tailored software.

23 Short-comings of specification solutions

The problem with requirements embedded in unique
software is that they are single-point solutions.
Requirements expressed in Word documents can be
problematic since they are often unclear and imprecise
due to human interpretation, and are not machine
parsable. For example, the following could be stated as a
requirement: “All trees must have a height and a stem
diameter”. In order to determine if a data set meets this
requirement, it is necessary to specify how a tree is
represented, and whether “tree” refers to a single tree, a
bush, a treeline, etc. These types of ambiguities can be
avoided through the use of a formal syntax that utilizes
terms from the DRM and the EDCS.

3. Using TCRS
31 TCRS Concepts
By relying on the SEDRIS DRM and the EDCS, the

TCRS concepts provide the capability to specify the
broadest possible range of environmental data

requirements. A TCRS requirement, in this sense is
composed of two parts: a domain and a condition. The
domain is the set of all objects for which a requirement is
evaluated. The condition is the set of criteria applied to
each object in the domain. In the previous example, the
domain consists of all (software) objects that represent
trees. The condition is that the (software) object
representing the tree also be attributed with a height as
well as astem diameter. Note that what is missing hereis
information about how the trees may be represented and
how they may be attributed.

Consider two other requirements, again expressed in
English, but using DRM terms:

“Buildings must be represented by <Point_Feature>s with
<Property_Value> components for height and width.”

“Buildings represented as <Point Feature>s must be
given <Property Value> components for height and
width.”

At a glance these two requirements may seem the same,
but the difference lies in the distinct domains to which
their respective conditions are applied. This is what is
often not clear in English requirements and is the reason
that TCRS syntax must have an explicit distinction
between its domain and condition. The domain of the
first example is al DRM objects which represent
Buildings, while the domain of the second is only those
<Point_Feature> objects representing buildings.
Therefore a transmittal that contains buildings represented
as <Polygon>s with a height and width will fail the first
requirement. Note that the example is still missing an
important piece; namely which EDCS entries will be used
to identify the concepts of building, width, and height.
The TCRS syntax must also use the syntax of EDCS, and,
similarly, of the SRM. This requires the TCRS syntax to
be flexible and expressive, alowing a user to define many
different object sets for domains and conditions. Thisis
done by introducing Object Matching Expressions
(OME).

32 Object Matching Expressions

An OME is an expression composed of a set of individual
criteria, where each criteria is a pass/fail test for a given
object. An OME is evaluated against a SEDRIS object
and matches the object if the evaluation is determined to
be true. In the process of matching one object, other
selected objects (components for example) may be
involved. This set of objects satisfies the OME if the
evaluation is determined to be true. There are 10 different
criteria that can be used to build OMEs and are defined
below:

The component criteria evaluates to TRUE if the
matching object has a satisfying component
object.

The associate criteria evaluates to TRUE if the
matching object has a satisfying associate object.
The aggregate criteria evaluates to TRUE if the
matching object has a satisfying aggregate
object.

The object criteria without additional restrictions
evaluates to TRUE since the matching object is
itself. The matching object is the satisfying
object.

The descendent criteria evaluates to TRUE if the
matching object has a satisfying object which is
a descendent (recursive component
relationships).

The ancestor criteria evaluates to TRUE if the
matching object has a satisfying object which is
an ancestor (recursive aggregate relationships).
The field criteria evaluates to TRUE if the
matching object has a field value that is in the
specified allowed set of values. The matching
object isthe satisfying object

The referenced object criteria evaluates to TRUE
if the matching object references another object
that has been matched by other criteria in the
OME. The referenced object is the satisfying
object.

The indexed object criteria evaluates to TRUE if
the matching object indexes an object, through
one of the DRM indexing mechanisms. The
indexed object isthe satisfying object.

The function criteria evaluates to TRUE if the
matching object passes the user implemented
software tests. The implemented user function
determines the satisfying object.

Each of the above criteria may add extra restrictions on
satisfying objects. For example, all criteria nay require
that satisfying objects be of a given DRM class or that the
number of satisfying objects be within a given range.
Criteria can also be combined through the use of logical
‘and’, ‘or’, and ‘not’ operators.

Further expressive power is achieved by compounding
two OMESs together such that one OME applies to the set
of objects that satisfy another OME. For example, one
OME can match all objects of type LINEAR FEATURE
that have a component object of type
CLASSIFICATION_DATA. A compound OME can be
created by applying a second OME to the
CLASSIFICATION_DATA object. This second OME
could match CLASSIFICATION_DATA objects which
have a ‘tag’ field of TREELINE. This compound OME

would then match all LINEAR_FEATURE objects with a
CLASSIFICATION_DATA component of TREELINE

OMEs can be compounded in this way to any depth
required. Doing so will often yield a larger set of
satisfying objects, and in certain cases some of these
satisfying objects will be further referenced or have
additional criteria applied to them. For this reason, the
satisfying objects can be made available to other OMEs.

33 Requirements and OMEs

The domain of a requirement is expressed simply as an
OME. The domain isthe set of all objects in a transmittal
which match this OME. The condition may also use an
OME to define the rules that objects from the domain
must pass in order to satisfy the requirement. In addition,
the condition may also state that the domain of the
requirement contain a certain number of objects, although
thisis not considered part of an OME.

Within a TCRS there can be two kinds of OMEs, global
OMEs and local OMEs. A global OME is one that can be
referenced by the domain or condition of any requirement
in the TCRS document, or by any other OME. A local
OME is only used within the domain or condition which
defines it. The domain or condition may specify either a
global or alocal OME. A global OME must be given a
name for referencing by other OMEs, while alocal OME
must be anonymous.

34 TCRS verification

An application, called the XTCRS Checker, has been
developed to evaluate the requirements expressed in a
XM L-encoded TCRS document. The primary function of
this application is to evaluates a given data set against the
requirements in a TCRS document. The application dso
serves as a syntax checker for verifying the requirements
have been expressed according to the TCRS syntax.

341 XTCRSChecker capabilities

The XTCRS Checker is a command line application that
requires aTCRS document conforming to the XTCRS
DTD and a SEDRIS transmittal in STF as inputs. Given
these two inputs, the application will run and verify the
STF conforms to the specified TCRS.

The XTCRS checker has additional parameters to control
output and execution. An object identification string an
be provided with the —s option. This will cause the
XTCRS Checker to only check the object tree starting at
the object specified by the object identification string.
The TCRS document can be parsed and validated without
actually checking a transmittal. This is done by passing

the -v option to the application. The -0 option allows the
user to specify an output file that will be written out

containing the results. The results are stored in a
document that conforms to the XTCRS Output DTD.
This DTD defines a structured output of the application
and is provided with the XTCRS Checker. The structured
output files dlow for automatic parsing by other tools,

such as Focus, in order to make transmittal modifications
or automatic corrections.[2]

34.2 XTCRSChecker Output

The following shows the execution of the application
using the TCRS document ctdb_road_requirement.xml on
the transmittal belle31.stf and no additional options. The
results show that there were two objects which met the
domain, and that both of them failed the requirement. The
name of the requirement and the object id of the objects
that failed it, are provided in the output:

Running the application with the same inputs, but adding
an output file provides the resultsinthe file belle_out.xml.
The following displays the contents of belle_out.xml:

L L

tYpe.. e
i ame="bella¥l a0l
db_read _peqairems st yml >
! mases tedl_iqmt” demain_dite="2"»
e M
el rigscthc bt _belle.cti=1:0,62 138« Jobject_jdx
-mimisedrinsthistl_belle.sthli0, 62, 160 /coject o=
-

4. XML Encoding of TCRS

This section describes the XML elements, the possible
child — parent relationship of the elements, attributes, and
valid attribute values used to encode TCRS documents.

41 Top Level XML elements

The root element of a TCRS document encoded in XML
isthe <TCRS> element. Only two types of child elements
for <TCRS> are permitted, <requirement> and
<expression>. The <requirement> element is used to
define a requirement. The <expression> element is used
to encode an OME. When an <expression> element is a
child of a <TCRS> element, it defines a global OME.
Any <expression> elements child of a <TCRS> element
must have a ‘name’ attribute which is unique. The
<requirement> element has one mandatory attribute,
‘name,” which also must be unique, and two mandatory
child elements, <domain> and <condition>. When a
domain or condition is specified with a global OME, the
<domain> or <condition> will have an ‘expression_ref
attribute with a value that is the ‘name’ attribute of the
<TCRS> level <expression>. For loca doman or
condition OMEs, the <domain> or <condition> element
will have a child <expression> element. In addition, the
<condition> element has two optional attributes,
‘min_domain_siz€¢ and ‘max_domain_size’ to define
restrictions on the number of objectsin the domain.

The following illustrates the syntax for aTCRS with a
single requirement and global OME. The requirement has
a domain with a global OME referenced by domain_expr
and a condition with alocal OME

<TCRS>
<expr essi on nane= donai n_expr” >
<!-- OE Coes Here -->
<l-- OME Coes Here -->
</ expressi on>

<requi renent name="exanple_rqnt”>
<domai n expressi on_ref="donai n_expr”/>
<condi ti on nmi n_domai n_si ze="1">
<expr essi on>
<!-- OV Coes Here -->
<l-- OME Coes Here -->
</ expressi on
</condi ti on>
</ requirenent >
</ TCRS>

42 OME XML Syntax

In order to build an OME, the <expression> element must
have one or more children which will specify either a
logical operator element or one of the OME criteria
elements. These elements are described in the following
sections. With the exception of the <field> element, all of
the logical operator elements and criteria elements are
allowed to contain any of these same elements as child
elements. Allowing this recursive use of elements alows
the OME compounding described in section 3.2. Thus,
the compounding of OMEs is captured through the

encoding of the parent—child relationships of the
elements described in this section.

421 Logical operator syntax

The logical operators elements are <and>, <or> and
<not>. The <and> element evaluates to TRUEIf al of its
child elements evaluate to TRUE The <or> element
evaluates to TRUE if at least one of its child elements

evaluates to TRUE The <not> element evaluates to
TRUE if any of its child elements evaluates to FALSE.

Criteria elements can contain any number of child criteria
elements & well as logical operator elements. When a
criteria element contains other elements, the criteria
element evaluates to TRUE if al of its child elements
evaluate to TRUE.

422 Component criteria syntax

The <component> element is used to represent the
component criteria. Further restrictions may be placed on
the satisfying component objects using attributes o the

elements. Many of these attributes will also apply to other
criteriaelements as discussed in subsequent sections.

The‘class’ attributeis used to expressthe DRM class of a
satisfying object from a specific set DRM classes. The
value of the attribute is the name of the DRM class with
underscores in place of spaces.

<conponent class="Property_Val ue” />

Likewise the following OME will match an object that
has a Property Vaue component which has a Property
Characteristic component.

<conponent class= Property_Val ue” >
<component class= Property_Characteristic’/>
</ conponent >

The ‘min_count’ attribute requires that a minimum
number of satisfying objects be present in order for the
criteria to evaluate to true. Similarly, the 'max_count'
attribute requires a maximum number of satisfying
objects. The following example matches objects that have
exactly 3 Location components:

<conponent cl ass=*Locati on” m n_count =* 3"

max_count="3" />

The *optional’ attribute is used to express that the criteria
may evaluate TRUE even if there is no component object.
However, if a component is present then al the child
criteria elements must evaluate to TRUE. The following
will match objects which either have no Classification

Data components, or if they do, then the Classification
Data component has a component Property Value:

<conponent cl ass="C assification_Data”
opti onal =* TRUE" >
<conponent cl ass="Property_Val ue"/ >
</ conponent >

The ‘all’ attribute is used to express that all of the
satisfying objects pass the criteria child elements. For
example, the following will match objects only if al of its
components have a Property Characteristic component:

<conponent al | =* TRUE' >
<conponent class='Property_Characteristic’/>
</ conponent >

The ‘order’ attribute applies only to ordered DRM
relationships such as Vertex components of Polygons.
Since the DRM specifies that ordered relationships are
based on a DRM class, the ‘class’ attribute is required
when the ‘order’ attribute is given. In the following
example anly the 3 Location component of an object
will satisfy the criteria:

<conponent class='Locati on” order=3"/>

The ‘label’ attribute, unlike previous attributes, does not
restrict the set of satisfying objects. This attribute affects
the evaluation process of the criteria and the OME. When
this attribute is present the satisfying object is made
available for reference from other criteria within the
OME. The referenced object criteria is used to
accomplish this referencing as described in 4.2.10.

The ‘link_obj_label’ behaves similarly to ‘label’. When
relationships have a link object, this attribute is used to
label and reference the link object.

423 Associatecriteriasyntax

The <associate> element is used to represent the associate
criteria. The ‘class’, ‘order’, ‘all’, ‘optional’,
‘min_count’, ‘max_count’, ‘label’ and ‘link_obj_label’
attributes are also defined for the <associate> element.
The following example matches an object with a
Feature_Model associate that has a Union_of Features
component:

<associ ate cl ass='Feature_Model” >
<conponent class='Union_of _Features” />
</ associ at e>

424 Aggregatecriteriasyntax

The <aggregate> element is used to represent the
aggregate criteria. The ‘class’, ‘min_count’, ‘max_count’,
‘optional’, ‘all’, ‘label’ and ‘link_obj_label’ attributes are

defined for <aggregate>. For example, to match an
object which is shared by 2 or more Polygons, the
following would be specified:

<aggregate class= Pol ygon” m n_count="2"/>

425 Object criteriasyntax

The <object> element is used to represent the object
criteria. The ‘class’, ‘optional’, and ‘label’ attributes are
defined for <object>. The most common use case for the
<object> element is as the first child element of an
<expression> element. This helps to clarify which object
is being matched by an <expression> The <object>
element is commonly used with the ‘class’ attribute to
match an object of a given class. The following OME will

match al objects containing a Classification Data
component:
<expr essi on>
<obj ect >
<conponent class="C assification_Data"/>
</ obj ect >

</ expr essi on>

Another use case for the object criteria is provided with
the ‘expression_ref attribute. The value of this attributeis
the name of a global OME. An object matches the object
criteriaif it matches the referenced OME.

426 Descendent criteriasyntax

The <descendent> element is used to represent the
descendent criteria. The ‘class’, ‘min_count’,
‘max_count’, ‘optional’, ‘all’, and ‘label’ attributes are
defined for <descendent>.

The ‘generations attribute is used to limit the search to
the given ‘depth’ (umber of recursions or levels). The
value is a positive integer. For example, to require an
object to have a Polygon descendent no more than 3
generations below it, the following syntax would be used:

<descendent cl ass="Pol ygon” generations="“3"/>

427 Ancestor criteria syntax

The <ancestor> element is used to represent the ancestor
criteria. The ‘class, ‘min_count’, ‘max_count’,
‘optional’, ‘label’, ‘all,” and ‘generations attributes are
defined for <ancestor>. The following example requires
an object to have a Model ancestor no more than 3 levels
above:

<ancestor class=“Mdel” generations=3"/>

428 Fieldcriteriasyntax

The <field> element is used to represent the field criteria.
The <field> element has mandatory attributes of ‘name,
which is the name of the objects field, and ‘values', which
gives the set of allowed values for the field. The value of
the ‘name’ attribute is afield in the DRM fields structure
for the object. If the field name doesn’t exist for the DRM
class of the object being evaluated then the object cannot
satisfy the criteria. Fields within C structures or unions in
the DRM are given with the ‘dot’ notation, similar to C,
and must always be specified to the primitive type. For
example, a Property_Vaue object can have the fied
“meaning.code.attribute” which is of primitive type
EDCS Attribute_Code, but it cannot specify “meaning”
since “meaning” is a structured type. The format of the
‘values' attribute may take several forms depending on
the field datatype and the allowed field val ues.

Enumerated types can match a single enumerant or a list
of white-space delimited enumerants. The enumerants can
be specified either as the numeric value of the enumerant,
or as the name of the enumerant without the common
prefix. For example, the following field criteria for the
field name “ordering_reason”, which is of the DRM type
SE _Ordering_Reason, will match the enumerant
SE_ORDRNG_REASON_FIXED_LISTED.

<field name=“ordering_reason”
val ues="FI XED LI STED" />

For fields of numeric types, a match can be made to a
single value, alist of values, or arange of values. A range
of values may be specified with inclusive bounds using
parenthesis or exclusive bounds using brackets. Range
values may be unbounded in one direction by omitting
one of the bounds values. The following example will
match the given integer field, if itis either —1 or 9999:

<fiel d name="val ue. u. i nt eger _val ue”
val ues=“-1 9999” />

The following example will match the given integer field,
if it isgreater than or equal to 100 and |ess than 1000:

<field name='val ue. u.i nteger_val ue”
val ues="[100, 1000)”" />

The next example matches a floating point field if the
valueis greater than 1.0:

<field nane='val ue. u. fl oat_val ue”
val ues=“1.0,)" />

EDCS data types are specified similar to enumerants,
using the EDCS label without the prefix. The EDCS
Attribute is required for evaluating EDCS enumerants.
The first option is to specify both the attribute and the
enumerant with a separating colon:

<field nanme='val ue. u. ee_code”
val ues="BUl LDI NG_FUNCTI O\: HOUSE” / >

The second option is to provide afield criteria requiring
an enumerated EDCS Attribute at the same level as the
EDCS Enumerant field criteria. In this situation, the
EDCS Attribute can be left out. The following example
demonstrates this case:

<fi el d name="meani ng. code. attri bute”
val ues="BUl LDI NG_FUNCTI ON' />

<field nanme='val ue. u. ee_code”
val ues="HOUSE' />

Fields of type SE_String are matched as one complete
string value. The field only matches if the string value of
thefield isidentical to the values attribute.

429 Referenced object criteria syntax

The <referenced_object> element is used to represent the
referenced object criteria. The ‘class’ and ‘optional’
attributes are defined for the <referenced_object>
element. The mandatory ‘object_ref attribute is used to
specify the label of the referenced object. The value of
‘object_ref’ must match the label’ or ‘link_obj_label’
attribute of another element under the <expression>
element. A satisfying object of another criteria in the
OME, which has the assigned referenced label, will also
satisfy the referenced object criteria.

The following example illustrates applying criteria to a
link object using the <referenced_object> element. The
link object between the State Related Features object and
its component Feature Hierarchy, is labeled using the
value state data obj. The link object can then be
refereneced with the object ref attribute of the
<referenced_object> element.

<obj ect class="State_Rel at ed_Feat ures”>
<field nanme="state_tag”
val ues=" EXI STENCE_STATUS" />
<conponent class="Feature_H erarchy”
l'i nk_obj _| abel =“st ate_dat a_obj "/ >
<ref erenced_obj ect class="State_Data”
obj ect _ref=“state_data_obj ">
<field nanme="state_data. val ue_type”
val ues=" ENUMERANT_CCDE" />
<field name="state_data.u.ee_code”
val ues=" DAMAGED" />
</ referenced_obj ect >
</ obj ect >

4.2.10 Indexed object criteriasyntax

In the DRM there are several instances where objects are
referenced by an index value. The most common example
is Attribute_Set_Index where the DRM index field value
is used to index an Attribute_Set object from a base

Attribute_Set_Library object. Other examples exist for
Colour_Index, Model_Instance_Template Index and
several different classes indexed from Data_Table cells.
In al cases, the DRM defines these component
relationships to be ordered. This requires the ‘class
attribute to be used in the syntax when encoding the
TCRS.

The indexed object criteria is represented with the
<indexed_object> element. This element is used when a
criteriaisto be applied to an object being indexed through
the DRM indexing mechanism. Three attributes are used
to give the necessary information, field index,
dt_cell_index, and base object ref. The ‘field_index’
attribute gives the name of the (matching object’s) field
that is used to retrieve the actual index value. The
exception to this is when a component of a Data_Table or
Data Table Library is being indexed, in which case the
index value is stored in a Data Table cell. The
‘dt_cell_index' attribute is a list of comma delimited

positive integers which define the ‘coordinate’ of the cell
based on the Data_Table's Axis components. The number
of integers must match the number of Axis components of
the Data_Table. The base object from which the indexing
is computed must be specified with the ‘base_object_ref

attribute which gives the label of a referenced object
within an OME.

The following example will match an
Attribute_Set Index object which indexes an
Attribute_Set with a Property Vaue component of
WIDTH: (The reader is referred to the SEDRIS DRM
documentation for information on the DRM Attribute Set
indexing mechanism.)

<obj ect class="Attribute_Set_|ndex">
<associate class=Attri bute_Set_Tabl e_G oup”>
class="Attribute_Set_Tabl e”
| abel = attr_set_i ndex_base_obj"/>
</ associ at e>

<i ndexed_obj ect
base_obj ect _ref="attr_set_i ndex_base_obj”
field_index="index' class="Attribute_Set”>
<conponent cl ass= Property_Val ue”>
<fi el d name=' meani ng. code_t ype”
val ues="ATTR BUTE"/ >
<fi el d nane='nmeani ng. code. attri bute”
val ues=“WDTH/ >
</ conponent >
</ i ndexed_obj ect >
</ obj ect >

4.2.11 Function criteriasyntax

The <function> element is used to represent the function
criteria. It is provided to allow users to create their own
functions for evaluating user criteria. There are 3
mandatory attributes: ‘name’, which is the function name

to be called, ‘args, which specifies the arguments to be
passed to the function, and ‘library’ which is where the
function resides All functions must have the following
signature:

SE_Boolean function (SE_Object obj_to_evaluate,
Char* args,
char *err_string);

A user defined function takes an object and determines
whether t passes the user criteria or not. If the object
failed the user criteria, the function returns an error string.

The following example illustrates how a user would
specify caling a function by the name
polygon_is vertical and found in the library
my_tcrs functions_lib in a TCRS document:

<functi on name="pol ygon_is_vertical "
args="tol erance”
library="ny_tcrs_functions_lib"/>

4.3 Examples

The following three examples illustrate how data
requirements can be expressed using the TCRS
capabilities.

431 Limitingthe number of polygon objects

The following requirement specifies a range of from 100

to 1 million polygons objects to be present within a data
set.

<requi renent name="exanple_1">
<domai n>
<expr essi on>
<obj ect class="Pol ygon" />
</ expressi on>
</ donai n>
<condi tion
m n_donai n_si ze="100"
mex_donai n_si ze=*1000000" />
</requi renent >

432 Requiring specific environmental entities

The following requirement specifies at least one race
track to be present and represented as an Areal Feature.

<requi renent nane="exanpl e_2">

<domai n>
<expressi on>
<obj ect class="Areal _Feature”>

<conponent class="C assification_Data”>
<field name="tag”
val ues="RACE_TRACK'/ >
</ conponent >
</ obj ect >
</ expr essi on>

</ donmai n>
<condi tion nin_donai n_si ze="1" />

</requirenent >

4.3.3 Specifying application-dependent equivalence

The following requirement specifies that environmental
objects classified as either a lighthouse or a a building
functioning as a lighthouse must be represented as a
Point_Feature and must have a height greater than 100
feet.

<requi rement name="“exanple_3">
<domai n>
<expr essi on>
<obj ect>
<or >
<conponent class="d assification_Data”>
<field nane="tag”
val ues=" LI GHTHOUSE" / >
</ conponent >
<conponent class="d assification_Data”>
<field nane="tag”
val ues="BU LD NG" />
<conponent cl ass="Property_Val ue” >
<field
nanme=" meani ng. code. attri bute”
val ues =" BU LDl NG_FUNCTI ON" / >
<field nane="val ue. u. ee_code”
val ues=" LI GHTHOUSE" / >
</ conponent >
</ conponent >
</or>
</ obj ect >
</ expressi on>
</ donai n>

<condi ti on>
<expressi on>
<obj ect cl ass="Poi nt_Feature”>
<conponent class="Property_Val ue” >
<field nane="neani ng. code. attribute”
val ues =" HEI GHT_ABOVE_SURFACE_LEVEL" />
<field nane="val ue_unit”
val ues="FOOT” />
<field nane="val ue. u. fl oat _val ue”
val ues="(100,)" />
</ conponent >
</ obj ect >
</ expr essi on>
</condi ti on>
</requirement >

5. Future TCRS evolution and application

Expressing complex environmental data requirements
through the use of XML tags can be tedious and error
prone. The current TCRS technology aso forces the
users of TCRS to learn a new syntax, which may distract
from their primary objective, the expression of their
environmental data requirements. This may further deter
users from using the technology to articulate their
reguirements in a concise and unambiguous manner.

A graphical user interface may be a more attractive
solution for developers or managers who wish to express
their complex reguirements through a simpler, more
intuitive, and more efficient method. The next step in the
development of the TCRS applications is to provide such
a user interface. Through such an interface, users will
only be required to know the terminology that relates to
the environmental data (namely, the SEDRIS DRM,
EDCS, and SRM). The interaction to build a TCRS
document would be managed through context-sensitive
user interfaces that can provide for on-thefly error
checking as a user selects and combines DRM classes or
EDCS entries. In this manner, incorrect combinations of
DRM classes can be avoided, and default settings for
legitimate class combinations can be utilized. In addition,
range values, default values, and recurring patterns of
class combinations can be stored as specific user
preferences and recalled when needed.

The user can employ drag and drop sequences, and create
the necessary classes and their desired conditions, without
having to learn the underlying syntax. More intuitive and
natural language expressions and menu choices can be
used to allow the user to express the desired conditions
and requirements. And upon completion such a tool will
also be able to process and validate a data set against the
requirements that the user has produced.

Once TCRS documents can be generated more rapidly,
users can combine smaller TCRS documents to
accomplish larger and more complicated tasks. For
example, applications (such as database converters [3])
can invoke automated or semi-automated data
transformations, if an incoming data set matches all the
necessary criteria for an input TCRS, and the necessary
data is present to be transformed according to an output
TCRS. We envision these capabilities, tools, and other
innovations and improvements will go along way toward
providing a better platform for environmental data
interoperability. We also envision the techniques used for
validation and evaluation of environmental data can be
applied to other fields and the basic concepts of TCRS
can be extended and used in other areas.

6. Conclusion

This paper has discussed the TCRS methodology and
XML syntax, and has highlighted the role of the TCRS in
expressing environmental data requirements. It has
illustrated the use of the TCRS through examples using
the concept and methodology. A new application that
uses machine parsable syntax to validate SEDRIS data
has been introduced, and elements of a syntax using an
XML encoding have been discussed in detail. The syntax
of the XML encoding was described in detail with
examples given at both the atomic element levels and as

compound expressions. Finaly, future development and
the application of this technology were explored.

7. References

[1] J Watkins, J. Campos: “Consuming SEDRIS
Transmittals — A Pragmatic Approach”, Fall SIW
2001

[2] M. A. .Pigora, D. Shen, J. Campos: “Innovating with
SEDRIS Tools’, Fall SIW 2001

[3] K. Wertman, J. Campos. “Using STFs for CTDB
Production”, Fall SIW 2002.

Author Biographies

GREG HULL is a Software Engineer with SAIC. He
has been working the SEDRIS project for 4 years. Mr.
Hull graduated from the University of Central Florida
with B.S. degreesin Computer Science and Mathematics.

JESSE CAMPOS is a Software Engineer with SAIC. He
has keen working the SEDRIS project for amost five
years. His primary expertise is in software development
as it applies to databases. Mr. Campos graduated from
the University of Central Floridawith aB.S. in Electrical
Engineering and a Masters in Business Administration.

FARID MAMAGHANI is project manager and technical
director of the SEDRIS project. He has been involved in
modeling, simulation, and systems engineering for more
than 20 years.

