
Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 1

Fundamentals for AccessingFundamentals for Accessing
TransmittalsTransmittals
 http://www.sedris.org/

SEDRIS™ Technology Conference
Lake Buena Vista, FL

06 January 2004

Gregory Hull
SAIC
greg.a.hull@saic.com

Kevin Wertman
SAIC
kevin.m.wertman@saic.com

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 2

About This TutorialAbout This Tutorial

• DESCRIPTION
This tutorial covers the fundamentals of accessing SEDRIS transmittals through the
use of the SEDRIS transmittal access C and C++ APIs. Traversal strategies, object
management, and API behaviors are discussed applicable to both the C and C++
APIs. Pseudo code and algorithms for performing common actions across a range of
applications are provided. The mechanics of the APIs are provided with an
introduction to the C functions and data structures, as well as the C++ classes and
methods. Coding samples in both languages are provided.

• WHO SHOULD ATTEND
Software engineers who intend to design and implement SEDRIS-based applications,
or those interested in learning the basic functionality of the SEDRIS APIs.

• PREREQUISITE
A working knowledge of C/C++, or other programming languages is strongly
recommended. Prior attendance at either the "Introduction to SEDRIS for Managers"
or "SEDRIS - The Technology Components" tutorial is recommended.

• WHAT TO EXPECT
Attendees gain a fundamental understanding of the issues to access SEDRIS
transmittals. The attendee also gains basic insight into the functionality and
mechanics of the SEDRIS APIs.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 3

AgendaAgenda

• SEDRIS C API Background and
Fundamentals

• C AP I Extraction component
• C API Insertion component
• Introduction to the SEDRIS C++ API
• Summary

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 4

Purpose and ScopePurpose and Scope

• Purpose
– Understand the capabilities of the SEDRIS API.
– Introduce the key functions and data structures.

• Scope
– Highlight API capabilities.
– Demonstrate API functionality through small applications and

routines.
– Introduce and explain how to use API functions and data types.

• Does NOT Cover
– Issues of good transmittal design or specific strategies of

consumption or production.
– Every API call, refer to SEDRIS Reference Manual and source

code header files for complete description.
– EDCS, SRM or DRM API functions.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 5

SEDRIS C API
Background and
Fundamentals

SEDRIS C API
Background and
Fundamentals

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 6

TopicsTopics

• Basic Definitions
• AP I Components
• AP I Conventions
• AP I Data Types
• Basic Tools
• Reference Material

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 7

Basic DefinitionsBasic Definitions

• Application Program Interface (API)
– An encapsulation of functionalities common to many

applications into reusable modules.

• API Implementation
– The instantiation of an API’s functionality in software that

is bound to a software language.

• SEDRIS Transmittal
– A collection of SEDRIS objects conforming to the DRM

and accessible thru the SEDRIS API.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 8

SEDRIS API ComponentsSEDRIS API Components

• Transmittal Access API
– C and C++ versions
– Level 0

• Data Extraction functions provide methods to search and access
DRM objects in a SEDRIS Transmittal .

• Data Insertion functions provide ability to create or remove DRM
objects and relationships.

– Level 1 – Common convenience functions built on top
of the Level 0 API functions.

• DRM - Provides access to meta-data describing
DRM classes, data types and relationships.

• EDCS AP I
• SRM AP I

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 9

SEDRIS C API ConventionsSEDRIS C API Conventions

• Function and data type naming: SE_ followed by function
mnemonic, first letter of each word capitalized.
(SE_CreateObject, SE_Object)

• SEDRIS constants and enum values are in ALL_CAPS
(SE_DRM_CLS_TRANSMITTAL_ROOT)

• Function return status: The return type of most functions is
SE_Return_Code which is either SE_RET_CODE_SUCCESS or
SE_RET_CODE_FAILURE.

• Function returned data:
– Most data returned from the API is done via pointers to an opaque

type. (SE_Object)
– All data returned through opaque types is freed using a

corresponding API function. (SE_FreeObject)

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 10

SEDRIS C API Data TypesSEDRIS C API Data Types

• Basic Data Types:
– Promote machine/compiler independence
– Examples: SE_Integer_Unsigned, SE_Long_Float,

SE_Boolean, SE_Short_Integer_Positive

• Opaque Types:
– Promote implementation independence through the

hiding of underlying structures
– Commonly referred to as handles
– Examples: SE_Transmittal, SE_Object, SE_Iterator,

SE_Store, SE_Search_Filter, SE_Search_Boundary

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 11

SEDRIS C API Data TypesSEDRIS C API Data Types

• SE_Fields is a Tagged Union
– Contains all field information for every DRM object.
– Tag of type SE_DRM_Class specifies the DRM class of

the object.
– The tag is used to select the correct union member to

access.
– Example for <Transmittal Root>.

• fields.tag = SE_DRM_CLS_TRANSMITTAL_ROOT
• fields.u.Transmittal_Root

• SE_String
– The characters field stores the string as an array of

SE_Characters.
– The length field stores the length of the array.
– SE_Locale gives language and country information.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 12

Basic ToolsBasic Tools

• Core applications
– Depth
– Syntax Checker, Rules Checker
– Transmittal Browser
– stf_test, itr_test
– Focus
– Model Viewer
– EDCS Query Tool

• SEDRIS 3.1 to 4.0 Converter
– Convert STF transmittals created from the SEDRIS version

3.1 DRM and STF Implementation to the 4.0 version.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 13

Reference MaterialReference Material

• www.sedris.org/api.htm
• email reflectors

– help@sedris.org
– se-coders@sedris.org (primarily for associates)

• The Data Dictionary at
www.sedris.org/pro2trpl.htm
– Defines all functions and arguments for the API.
– Defines all data types used by the API.
– Listed by DRM, EDCS, Level 0, Level 1, and SRM.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 14

The Extraction
Component of the

SEDRIS C API

The Extraction
Component of the

SEDRIS C API

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 15

TopicsTopics

• Extraction capabilities
• Example 1: Reading the fields of the sample

Transmittal’s <Description> object
– Illustrates simple traversal methods and the basics of

opening a Transmittal and accessing objects.

• Example 2: Traversing with Iterators
– Retrieving all <Polygons> in the Transmittal.

• Example 3: Retrieving elevation data from a
<Property Grid>
– Learn how to extract data from a <Data Table> object.

• Advanced features of component Iterators
– Witness the power of the SEDRIS API.

• Miscellaneous Extraction Features

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 16

Extraction CapabilitiesExtraction Capabilities

The 3 Examples will cover the following topics:

• Retrieving the Root Object
• Traversing component relationships
• Retrieving the fields for objects
• Retrieving cells from <Data Tables>
• Selection and filtering of objects via Search

Filters and Spatial Boundaries
• Automatic traversal through a Transmittal via

branching criteria

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 17

Example 1: ReadingExample 1: Reading
the <Description>the <Description>

 Read the <Description> from the Read the <Description> from the
sample Lake Eola Transmittalsample Lake Eola Transmittal

• The description is stored in the fields of a
SE_DRM_CLS_DESCRIPTION object which the DRM requires to
be a component of the <Transmittal Root> object.

• To do this we need to know:
– How to open and close a Transmittal for reading.
– How the C API handles status codes and error descriptions.
– About the API’s methods of memory management.

• SE_Store’s used to get fields and other object data.
• Memory allocated by the API through opaque data types.

– How to access objects by traversing relationships.
– How to retrieve fields from an object.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 18

Example 1: Reading theExample 1: Reading the
<Description> [2of 3]<Description> [2of 3]

• Step 1: Open the Transmittal.
• Step 2: Check the status of step 1.
• Step 3: Get the Root Object.
• Step 4: Get the <Description> as a component

of the <Transmittal Root>.
• Step 5: Create an SE_Store to manage the

memory for the <Description> object fields.
• Step 6: Get the fields from the object.
• Step 7: Free memory.
• Step 8: Close the Transmittal.

Steps to Retrieve the <Description>Steps to Retrieve the <Description>

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 19

Example 1: Reading theExample 1: Reading the
<Description> [3 of 3]<Description> [3 of 3]

• SE_CreateStore()
• SE_OpenTransmittalByFile()
• SE_GetLastFunctionStatus()
• SE_GetRootObject()
• SE_GetComponent3()
• SE_GetFields()
• SE_FreeStore()
• SE_FreeObject()
• SE_CloseTransmittal()

Functions needed to retrieve theFunctions needed to retrieve the
<Description> object<Description> object

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 20

Example 1: ManagingExample 1: Managing
Memory with StoresMemory with Stores

• A Store is an API data type (SE_Store) created by an application
to manage memory allocated by the API.

• A Store manages the memory allocated for:
– An description string for the status of the last function called.
– Object’s Field data
– Data Table’s cell data
– Image’s image data

• A Store may be reused for better efficiency.
• Data managed by a Store is passed back from the API

functions in a separate pointer.
• Data is valid until the Store is freed or the Store is reused in

another AP I call.
• IMPORTANT: Make sure not to reuse the data after the

Store has been reused or freed!

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 21

Example 1: Creating a StoreExample 1: Creating a Store

• SE_CreateStore() creates a Store for the given API
implementation.

• The API allocates the SE_Store and so must be
freed using SE_FreeStore().

SE_Return_Code SE_CreateStore
(
 const char implementation_identifier[],
 SE_Store *new_store_ptr
);

SE_Return_Code SE_FreeStore
(
 SE_Store to_free
);

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 22

SE_Return_Code SE_OpenTransmittalByFile
(
 const char file_name[],
 const char implementation_identifier[],
 SE_Access_Mode access_mode,
 SE_Transmittal *transmittal_out_ptr
);

Example 1: Opening the TransmittalExample 1: Opening the Transmittal

• The ‘root’ file of the STF transmittal is passed as the
file_name.

• Specify “stf” as the implementation_identifier.
• Specify access mode of SE_AC_MODE_READ_ONLY.
• Assigns the Transmittal handle in the SE_Transmittal.
• Returns SE_RET_CODE_SUCCESS or

SE_RET_CODE_FAILURE.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 23

SE_Return_Code SE_GetLastFunctionStatus
(
 SE_Status_Code *last_function_status,
 SE_Store store_in,
 char **status_description
);

Example 1: Checking theExample 1: Checking the
Function’s StatusFunction’s Status

• Assigns last_function_status a status code for the
function call last made to the C API.

– SE_STAT_CODE_SUCCESS usually set when the return
code of the function was SE_RET_CODE_SUCCESS.

– Other possible codes depend on the function called. For
example SE_STAT_CODE_TRANSMITTAL_UNACCESSIBLE
may be set for SE_OpenTransmittal().

• The status_description, if not NULL, is managed by the
store passed in and will contain extra information about
the kind of failure.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 24

SE_Return_Code SE_GetRootObject
(
 SE_Transmittal transmittal_in,
 SE_Object *root_object_out_ptr
);

Example 1: Getting the Root ObjectExample 1: Getting the Root Object

• The DRM specifies that all Transmittals must
have a Transmittal Root object which is at the
top of the Transmittal’s hierarchy.

• SE_GetRootObject() returns the root object as
an SE_Object for the opened Transmittal passed
in to the function.

• The SE_Object is allocated by the AP I , and so
must be freed when no longer used.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 25

Example 1: Getting ComponentsExample 1: Getting Components

• This is a three-parameter MACRO which calls the
AP I function SE_GetComponent() with default values
passed for more advanced options.

• Simple to use.
• Returns a component of the object passed in.
• Can only return the first component of a given type, if

more than one exists.

SE_Return_Code SE_GetComponent3
(
 SE_Object object_in,
 SE_DRM_Class drm_class,
 SE_Object *object_out
);

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 26

Example 1: Reading Object FieldsExample 1: Reading Object Fields

• Field data is returned in a fields_out_ptr, which is
allocated and managed by store_in.

• The fields_out_ptr is valid until store_in is either
freed or reused.

SE_Return_Code SE_GetFields
(
 SE_Object object_in,
 SE_Store store_in,
 SE_FIELDS_PTR *fields_out_ptr
);

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 27

SE_Return_Code SE_FreeObject
(
 SE_Object old_object
);

Example 1: Freeing ObjectsExample 1: Freeing Objects

• Called to free memory resources associated with
SE_Objects returned by the API.

• Does NOT remove the object from the
Transmittal.

• Needs to be called for every SE_Object that has
been returned.
– Even if it is the same object retrieved previously.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 28

Example 1: Closing TransmittalsExample 1: Closing Transmittals

• SE_CloseTransmittal() frees memory associated
with the opened Transmittal, and closes it.

• Only pass in Transmittals that have been
retrieved with the SE_OpenTransmittal() calls.

SE_Return_Code SE_CloseTransmittal
(
 SE_Transmittal transmittal
);

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 29

Example 1: Example CodeExample 1: Example Code

main() {
SE_Ret_Code ret;
SE_Transmittal xmittal;
SE_Object root_obj, desc_obj;
SE_Store store;
SE_FIELDS_PTR desc_flds;

 ret = SE_CreateStore(“stf”, &store);
 ret = SE_OpenTransmittalByFile(“Lake_Eola.stf”, “stf”,
 SE_AC_MODE_READ_ONLY, &xmittal);
 ret = SE_GetRootObject(xmittal, &root_obj);

 ret = SE_GetComponent3(root_obj, SE_DRM_CLS_DESCRIPTION, &desc_obj);

 ret = SE_GetFields(desc_obj, store, &desc_flds);

 printf(“Transmittal Description %s\n”, desc_flds->u.Description.abstract.characters);

 ret = SE_FreeStore(store); // this must be done after the printf above!
 ret = SE_FreeObject(root_obj);
 ret = SE_FreeObject(desc_obj);

 ret = SE_CloseTransmittal(xmittal);
}

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 30

Example 2: TraversingExample 2: Traversing
with Iteratorswith Iterators

Retrieve all of the <Polygons> in the sampleRetrieve all of the <Polygons> in the sample
Lake Eola TransmittalLake Eola Transmittal

• We could do this by iteratively retrieving
components from the <Transmittal Root> on
down.
– This would be VERY tedious and inefficient.

• This example will introduce:
– Iterators
– How to create and use Iterators
– How to define search rules, and create search filters to

pass to our Iterator

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 31

Example 2: TraversingExample 2: Traversing
with Iteratorswith Iterators

• Step 1: Open the transmittal and get the Root Object.
• Step 2: Specify SE_Search_Rule for matching

 <Polygon> objects.
• Step 3: Use the Search Rules to create a SE_Search_Filter.
• Step 4: Use the Search Filter and Root Object to create a

 component Iterator.
• Step 5: Call SE_GetNextObject() to traverse through matching

 objects (<Polygons>).
• Step 6: … process the <Polygons> ...
• Step 7: Free the memory for the object, Search Filter and Iterator.
• Step 8: Close the transmittal.

Steps to Retrieve <Polygons>Steps to Retrieve <Polygons>

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 32

Example 2: TraversingExample 2: Traversing
with Iteratorswith Iterators

• SE_CreateSearchFilter()
• SE_InitializeComponentIterator()
• SE_IsIteratorEmpty()
• SE_GetNextObject()
• SE_FreeIterator()
• SE_FreeSearchFilter()

New functions needed to retrieveNew functions needed to retrieve
<Polygons><Polygons>

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 33

Example 2:Example 2:
About IteratorsAbout Iterators

• An Iterator provides sequential access to a set of objects matching a
given criteria.

• Iterators are represented by the opaque data type SE_Iterator.
Since these are allocated by the API, they must be freed with the
API call SE_FreeIterator.

• The API function SE_IsIteratorEmpty() provides a way to determine
if there are any more objects in the iterator.

• The API function SE_GetNextObject() provides a way to step
through the set.

• There are 3 types of Iterators: component, associate and aggregate,
which traverse the 3 different types of relationships.

• More advanced features provide extensive control over selection
process and objects returned via parameters to:
– Simplify access to more complex structures
– Apply conversions to object field data
– Control traversal sequence & branching

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 34

Example 2: Specifying Search RulesExample 2: Specifying Search Rules

• Boolean expressions built using operators SE_AND, SE_OR and
SE_NOT, and the following set of matching criteria:

– Object type match. (Abstract or concrete classes are valid.)
– Exact field value match and field value range match.
– Hierarchy depth. Matches objects within a given number of levels from

the base object.
– Component object type match.
– Component exact field value or field value range match.
– Predicates: application functions “called back” by the user to evaluate

the object.
• Implemented as arrays which can be initialized with

convenient C Macros.

SE_Search_Rule polygon_rules[] =
{
 SE_AND
 (
 SE_DRM_CLASS_MATCH(POLYGON),
 SE_MAX_SEARCH_DEPTH(5)
)
 SE_END
};

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 35

Example 2: Creating Search FiltersExample 2: Creating Search Filters

SE_Return_Code SE_CreateSearchFilter
(
 SE_Transmittal transmittal,
 const SE_Search_Rule rules[],
 SE_Search_Filter *search_filter_out_ptr
);

• Search Filters can be reused by more than one Iterator.
• They are allocated by the API and must be freed using

SE_FreeSearchFilter().
• May be freed before the Iterator is freed.

SE_Return_Code SE_FreeSearchFilter
(
 SE_Search_Filter search_filter
);

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 36

Example 2: Component IteratorsExample 2: Component Iterators

SE_Return_Code SE_InitializeComponentIterator3
(
 SE_Object start_object,
 SE_Search_Filter filter,
 SE_Iterator *Iterator_out_ptr
);

• SE_InitializeComponentIterator3() creates a component
SE_Iterator.

• The Iterator will traverse down from start_object and find
all objects matching the criteria stored in the search filter.

• This is a C language macro that resolves to
SE_InitializeComponentIterator() with default parameters
passed for more advanced functionality of Iterators.

• SE_Iterator is an opaque type that is allocated by the API,
and so must be freed with SE_FreeIterator().

SE_Return_Code SE_FreeIterator
(
 SE_Iterator Iterator
);

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 37

Example 2: Retrieving ObjectsExample 2: Retrieving Objects
from Iteratorsfrom Iterators

SE_Return_Code SE_GetNextObject
(
 SE_Iterator iterator,
 SE_Object *next_object,
 SE_Object *link_object
);

• Objects can be sequentially retrieved from Iterators using the API
function SE_GetNextObject().

• SE_Objects are allocated by the API and must be freed.
• If the component relationship has a link object, the object is

returned in the third argument.
• SE_IsIteratorEmpty() returns SE_TRUE if there are no objects to

be returned by the iterator.

SE_Boolean SE_IsIteratorEmpty
(
 SE_Iterator iterator
);

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 38

Example 2: Example CodeExample 2: Example Code

void FindPolygons{ SE_Transmittal xmittal, SE_Object root_obj)
{
SE_Return_Code ret;
SE_Search_Rule polygon_search_rules[] =
{
 SE_DRM_CLASS_MATCH(POLYGON) /* default to Infinite depth */
}
SE_Search_Filter search_filter;
SE_Iterator iterator;
SE_Object polygon_obj;

 ret = SE_CreateSearchFilter(xmittal, polygon_search_rules, &search_filter);

 ret = SE_InitalizeComponentIterator3(root_obj, search_filter, &iterator);

 while(SE_IsIteratorEmpty (iterator) == SE_FALSE)
 {
 ret = SE_GetNextObject(iterator, &polygon_obj, NULL ;
/* process the polygon object */

 ret = SE_FreeObject(polygon_obj);
 }
 ret = SE_FreeIterator(Iterator);
 ret = SE_FreeSearchFilter(search_filter);
}

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 39

Example 3: RetrievingExample 3: Retrieving
Gridded Elevation DataGridded Elevation Data

We want to retrieve elevation dataWe want to retrieve elevation data
from a <Property Grid>from a <Property Grid>

• In the DRM, a <Property Grid> is a sub class of the
abstract class <Data Table>.

• To retrieve data from a <Data Table> we need to
know:
– What is a <Data Table’s> Signature and Extents.
– What functions exist for retrieving data from a <Data Table>.
– What the format of retrieved data can be.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 40

Example 3: RetrievingExample 3: Retrieving
Gridded Elevation DataGridded Elevation Data

• Step 1: Open the Transmittal and get the Root Object.
• Step 2: Get the <Property Grid>.
• Step 3: Create a Store.
• Step 4: Get the <Property Grid> extents.
• Step 5: Get the <Property Grid> signature.
• Step 6: Get the <Property Grid> data.
• Step 7: Process the data.
• Step 8: Free the memory associated with the extents and signature.
• Step 9: Free the <Property Grid>, Store, and Root Object.
• Step 10: Close the Transmittal.

Steps to retrieve gridded elevation dataSteps to retrieve gridded elevation data

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 41

Example 3: RetrievingExample 3: Retrieving
Gridded Elevation DataGridded Elevation Data

• SE_GetDataTableSubExtent () (level 1)
• SE_GetDataTableSignature() (level 1)
• SE_GetDataTableData()
• SE_FreeDataTableSubExtent() (level 1)
• SE_FreeDataTableSignature() (level 1)

New functions needed toNew functions needed to
retrieve elevation dataretrieve elevation data

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 42

Example 3: <Data Table>Example 3: <Data Table>
SignaturesSignatures

• A <Data Table> consists of Cells.
• Cells consist of 1 or more elements (types of data).
• The <Data Table>’s signature determines the

elements for its cells.
• The signature is the set of ordered <Table Property

Description> components under the <Data Table>
object.

• EDCS codes in the <Table Property Description>
fields give the meaning of an element.

• A Level 1 API function exists as a convenience to
get a <Data Table>’s signature.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 43

Example 3: <Data Table>Example 3: <Data Table>
SignaturesSignatures

• Returns the number of elements for the data_table.
• Allocates an array of indices for the ordered <Table Property

Description>’s that are components of data_table.
• Optionally creates an array of the fields for these <Table

Property Description>s.
• These lists should be freed with the Level 1 function

SE_FreeDataTableSignature().

SE_Status_Code SE_GetDataTableSignature
(
 SE_Object data_table,
 SE_Integer_Unsigned *element_count_out_ptr,
 SE_Table_Property_Description_Fields **prop_array_out_ptr,
 SE_Integer_Positive **tbl_prop_descr_ptr
);

void SE_FreeDataTableSignature
(
 SE_Table_Property_Description_Fields *prop_array_ptr,
 SE_Integer_Positive *tbl_prop_descr_ptr
);

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 44

Example 3: The <Data Table> ExtentsExample 3: The <Data Table> Extents

• <Data Table>s may have 1 or more spatial or non-spatial
dimensions.

• The dimensional extents of <Data Table> is determined by its
ordered <Axis> components.

• A Level 1 API function exists to get a <Data Table>’s extents.

SE_Status_Code SE_GetDataTableSubExtent
{
 SE_Object data_table,
 SE_Data_Table_Sub_Extent *extents_ptr,
 SE_Integer_Unsigned *cell_count_ptr
);

• The number of cells in the <Data Table> is returned.
• SE_Data_Table_Sub_Extent stores the number of <Axis>

dimensions and the starting and stopping value for each <Axis>.
• The extents should be freed with the Level 1 function below:

SE_Status_Code SE_FreeDataTableSubExtent
{
 SE_Data_Table_Sub_Extent *extents_ptr
);

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 45

Example 3: <Data Table>Example 3: <Data Table>
Conceptual LayoutConceptual Layout

 Illustration of small data table with 4 cells
and 2 elements per cell.

• The types of the elements are
EDCS_Long_Float and EDCS_Integer which
are given in the 2 Table Property Descriptions

• There is 1 Axis of size 4.

456.65
1024

Cell 0

433.15
998

Cell 1

388.61
110

Cell 2

453.09
879

Cell 3

element 1

element 2

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 46

SE_Return_Code SE_GetDataTableData
(
 SE_Object data_table,
 const SE_Data_Table_Sub_Extent *extents_ptr,
 SE_Integer_Positive element_count,
 const SE_Integer_Positive tbl_prop_descr_num[],
 SE_Store store_in,
 SE_Data_Table_Data **dt_data_p
);

Example 3: <Data Table>Example 3: <Data Table>
Extraction FunctionsExtraction Functions

• Returns data as an array of SE_Data_Table_Data structs which
is managed by the store. This data struct contains a union with
pointers (arrays) for each data type that a data table may hold.

• The full extents of the Data Table may be retrieved by setting
extents_ptr to the value from SE_GetDataTableSubExtent. Or the
user may specify any arbitrary sub-extent of the data table.

• All elements in a Data Table may be retrieved by setting
element_count and the tbl_prop_descr_num array to values set
from SE_GetDataTableSignature. Or any subset of elements
from the list of elements may be retrieved.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 47

Example 3: <Data Table>Example 3: <Data Table>
Cell Data Memory OrganizationCell Data Memory Organization

 Illustration of how retrieved data table cell
data is accessed.

• To access 1st element 4th cell (value 453.09):
dt_data_p[0].dt_array.single_float_values[3];

456.65
1024

Cell 0

433.15
998

Cell 1

388.61
110

Cell 2

453.09
879

Cell 3

element 1

element 2

tbl_prop_descr_index = 1
value_type = SINGLE_FLOAT
dt_array.single_float_values =

SE_Data_Table_Data
array (dt_data_p)

tbl_prop_descr_index = 1
value_type = SINGLE_FLOAT
dt_array.single_float_values =

456.65 433.15 388.61 453.09

1024 998 110 879

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 48

void ExtractDataTableCells(SE_Object data_table, SE_Store store)
{
SE_Data_Table_Sub_Extent extents;
SE_Integer_Unsigned cell_count, element_count;
SE_Integer_Positive *tbl_prop_descr_num;
SE_Table_Property_Description_Fields *prop_descr_flds;
SE_Data_Table_Data *cell_data;

 status = SE_GetDataTableSubExtent(data_table, &extents, &cell_count);

 status = SE_GetDataTableSignature(data_table, &element_count,
 prop_descr_flds, tbl_prop_descr_num);

 ret = SE_GetDataTableData (data_table, &extents, element_count,
 tbl_prop_descr_num, store, &cell_data);
/* process the cell data */

 SE_FreeDataTableSubExtent(&extents);
 SE_FreeDataTableSignature(prop_descr_flds, tbl_prop_descr_num);
/* cell_data is freed when the Store is freed */
}

Example 3: Example CodeExample 3: Example Code

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 49

Advanced ComponentAdvanced Component
Iterator FeaturesIterator Features

SE_Return_Code SE_InitializeComponentIterator(
 SE_Object start_object,
 SE_Search_Boundary boundary,
 SE_Search_Filter filter,
 SE_Boolean directly_attach_table_components,
 SE_Boolean process_inheritance,
 SE_Boolean transform_locations,
 SE_Boolean follow_model_instances,
 SE_Boolean evaluate_static_control_links,
 const SE_Hierarchy_Select_Parameters *select_parameters_ptr,
 const SE_Hierarchy_Order_Parameters *traversal_order_parameters_ptr,
 SE_Traversal_Order general_traversal_pattern,
 SE_ITR_Behaviour itr_traversal,
 SE_Iterator *iterator_out_ptr);

• This is the complete definition of
SE_InitializeComponentIterator().

• Ten parameters we have not discussed before.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 50

Advanced ComponentAdvanced Component
Iterator FeaturesIterator Features

Component Iterators contain extensive features to:

• Filter objects
– Search Rules
– Search Boundaries
– Inter-Transmittal Referencing (ITR)

• Provide control over sequence and branching of traversal
– Traversal method
– Hierarchy selection

• Add objects or field data to the Iterator based on DRM
information
– Directly attach table components
– Process inheritance
– Transform locations
– Follow model instances
– Evaluate static <Control Links>

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 51

Advanced Component Iterator Features:Advanced Component Iterator Features:
FilteringFiltering

• Objects can be included or excluded based on:
– Search Rules:

• Selection determined from user defined rules based on objects’ fields or
relationships. Search Rules are used to create Search Filters.

– Search Boundary:
• Selection is based on whether the spatial location or extent of an object.

falls within a user defined search bounds.
• The search bounds is given by the C API data struct SE_Search_Bounds.
• The search boundary information is given with the creation of opaque C

API type SE_Search_Boundary using SE_CreateSpatialSearchBoundary()
– Inter-Transmittal Referencing (ITR):

• An ITR reference is a component or associate relationship from an object
in one Transmittal to an object in another. The DRM is not ITR aware. All
normal rules for relationships apply.

• Iterators may be configured include objects in others transmittals or to
ignore them. If including, the iterator can either resolve (access) the ITR
object or it may simply return an ‘unresolved’ SE_Object. The Status Code
set by SE_GetNextObject() will give an indication when an ITR object is
returned an whether it was resolved.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 52

Advanced Component Iterator Features:Advanced Component Iterator Features:
Sequencing and Branching ControlSequencing and Branching Control

• Objects can be ordered according to a Depth-first or a
Breadth-first Traversal.

• Hierarchy order parameters can be set to affect the
order in which components of hierarchy objects are
returned.

• Hierarchy selection parameters can be set to choose
the set of components that are returned.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 53

Advanced Component Iterator Features:Advanced Component Iterator Features:
DRM Related FeaturesDRM Related Features

• Directly attach table components:
– Indexed components are replaced with directly attached

instances.
– Examples: <Attribute Set Index> objects, <Color Index> , …

• Inherited components:
– The DRM specifies rules to allow objects to inherit components of

objects found higher in the aggregation tree. Inherited
components are semantically the same as directly attached
components.

– Component Iterators can be configured to return inherited
components as real objects.

• Follow model instances:
– When enabled, this feature causes an Iterator to return the

<Model> associated with a model instance as the model
instance’s component.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 54

Advanced Component Iterator Features:Advanced Component Iterator Features:
DRM Related FeaturesDRM Related Features

• Transform locations:
– For <Models>, coordinates are transformed from the

<Model’s> SRF to the World SRF.

• Evaluate static <Control Link>:
– <Control Link> objects in the DRM provide a mechanism

for specifying how field values of objects can be modified.
– Used to implement instance-specific values for object

fields.
– The component Iterator can process static <Control Link>

expressions and return fields containing the modified
values.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 55

Miscellaneous ExtractionMiscellaneous Extraction
Features and functionsFeatures and functions

• Object ID Strings
– SE_GetObjectFromIDString(), SE_GetObjectIDString().
– Every object in a transmittal has an ID String unique to the transmittal so

that they may be extracted directly without having to traverse from the
root object.

• Associate and aggregate Iterators
– SE_InitializeAssociateIterator(), SE_InitializeAggregateIterator()
– Similar to component Iterators, but with only search filters and ITR as

options and limited to a ‘depth’ of 1.

• Extracting a hierarchy of objects
– SE_GetPackedHierarchy()
– Extracts an entire hierarchy of the transmittal at one time.

• Extracting <Image> data
– SE_GetRearrangedImageData(), SE_GetImageData()

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 56

Miscellaneous ExtractionMiscellaneous Extraction
Features and FunctionsFeatures and Functions

• Extracting <Image> data:
– The API has a specialized function to extract <Image> data.
– Organization and word order of returned data is determined by

the <Image> object’s field values.
– Only one mip level can be extracted at a time.
– The start and stop texel parameters must correspond to the

start and stop texels for the Image.
– Stores are used to manage the memory for the <Image> data.
– Level 1 functions exist to convert <Images> between differing

representations (color model, scan direction, pixel depth, etc.).
SE_Return_Code SE_GetImageData(
 SE_Object image,
 SE_Integer_Unsigned start_texel_horizontal,
 SE_Integer_Unsigned start_texel_vertical,
 SE_Integer_Unsigned start_texel_z,
 SE_Integer_Unsigned stop_texel_horizontal,
 SE_Integer_Unsigned stop_texel_vertical,
 SE_Integer_Unsigned stop_texel_z,
 SE_Short_Integer_Unsigned mip_level,
 SE_Store store_in,
 unsigned char **data_out_ptr);

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 57

The Insertion Component
of the SEDRIS C API

The Insertion Component
of the SEDRIS C API

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 58

TopicsTopics

• Insertion Capabilities
• Example 4: Build a geometry representation of the

Lake Eola transmittal.
• Example 5: Build a feature representation of the

Lake Eola transmittal with elevation data.
• Example 6: Edit the feature representation by

editing the <Description> fields, removing some
objects and adding other objects.

• Example 7: Combine the feature representation
and geometry representations of Lake E ola by
using ITR.

• Miscellaneous Insertion Topics

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 59

Insertion CapabilitiesInsertion Capabilities

• Creating Transmittals by adding objects and
relationships.

• Adding cell data to <Data Tables>.
• Adding objects and relationships, to existing

Transmittals.
• Editing the fields of objects in existing Transmittals.
• Removing objects and relationships from existing

Transmittals.
• Publishing objects for use in ITR references.
• Make ITR references from one Transmittal to another.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 60

Example 4: GeometryExample 4: Geometry
RepresentationRepresentation

We want to create a geometryWe want to create a geometry
representation of Lake Eolarepresentation of Lake Eola

• To do this we need to know:
– How to open a Transmittal for creation.
– How to create SEDRIS objects.
– How to set the fields of an object.
– How to create relationships between objects.
– How to set the Root Object in the Transmittal.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 61

Example 4: GeometryExample 4: Geometry
RepresentationRepresentation

• Step 1: Open the Transmittal.
• Step 2: Create a <Transmittal Root> and set its fields.
• Step 3: Add the <Transmittal Root> to the transmittal.
• Step 4: Set the <Transmittal Root> as the root object.
• Step 5: Create a new object.
• Step 6: Set field data for new object - Optional.
• Step 7: Create a component relationship between the new

 object and its parent.
• Step 8: Free the new object.
• Step 9: Repeat Steps 5 - 8 until done.
• Step 10: Free the Root Object.
• Step 11: Close the Transmittal.

Steps to Create a TransmittalSteps to Create a Transmittal

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 62

Example 4: GeometryExample 4: Geometry
RepresentationRepresentation

• SE_OpenTranmittalByFile()
• SE_CreateObject()
• SE_SetFieldsToDefaults()
• SE_PutFields()
• SE_AddComponentRelationship()
• SE_SetRootObject()
• SE_FreeObject()
• SE_CloseTransmittal()

Functions needed to create Lake EolaFunctions needed to create Lake Eola
Transmittal using geometryTransmittal using geometry

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 63

Example 4: Creating a New TransmittalExample 4: Creating a New Transmittal

SE_Return_Code SE_OpenTransmittalByFile
(
 const char file_location[],
 const char implementation_identifier[],
 SE_Access_Mode access_mode,
 SE_Transmittal *transmittal_out_ptr
);

• With access_mode of SE _AC_MODE_CREATE, an
SE_Transmittal is created and passed back in
transmittal_out_ptr.

• Implementation_identifier is the implementation of the
AP I ; usually “stf”.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 64

SE_Return_Code SE_CreateObject
(
 SE_Transmittal transmittal,
 SE_DRM_Class drm_class,
 SE_Object *new_object_out_ptr
);

Example 4: Creating New ObjectsExample 4: Creating New Objects

• Creates a SE_Object in memory.
• The “drm_class” parameter specifies the object’s

DRM class.
• Transmittal is the Transmittal to which this object

will belong.
• The created object is allocated by the API and

must be freed by calling SE_FreeObject().

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 65

SE_Return_Code SE_PutFields
(
 SE_Object object,
 SE_FIELDS_PTR new_fields
);

Example 4: Setting Field ValuesExample 4: Setting Field Values

• Sets field values of an SE_Object.
• The drm_class member of the fields structure

must match the class of the object.
• The object is created with fields that are

initialized to the default for its class. If the
defaults are desired, then SE_PutFields() is not
necessary.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 66

SE_Return_Code SE_AddComponentRelationship
(
 SE_Object aggregate_object,
 SE_Object component_object,
 SE_Object link_object
);

 Example 4: Creating Object Relationships Example 4: Creating Object Relationships

• Establishes the relationship between an
aggregate and its component.

• If the DRM specifies a 2-way relationship, then
the component to aggregate relationship is made
too.

• Supports specification of link objects (use NULL
if no link object is required).

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 67

Example 4: The Root ObjectExample 4: The Root Object

• This sets the object that will be returned from a
call to SE_GetRootObject().

• The Root Object must be a Transmittal Root
Object.

• If the root object was set previously, then the old
root object is returned in old_root_object.

• NULL may be passed in for old_root_object.

SE_Return_Code SE_SetRootObject
(
 SE_Transmittal transmittal,
 SE_Object new_root_object,
 SE_Object *old_root_object
);

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 68

Example 4: Example CodeExample 4: Example Code

main()
{
SE_Return_Code ret;
SE_Transmittal xmittal;
SE_Object root_obj, description_obj;
SE_Fields root_flds, description_flds;

 ret = SE_OpenTransmittalFile(“Lake_Eola.stf, “stf”,
 SE_AC_MODE_CREATE, &xmittal);

 ret = SE_CreateObject(xmittal, SE_DRM_CLS_TRANSMITTAL_ROOT,
 &root_obj);
 ret = SE_SetRootObject(xmittal, root_obj, NULL);

 ret = SE_CreateObject(xmittal, SE_DRM_CLS_DESCRIPTION,
 &description_obj);
 ret = SE_SetFieldsToDefault(SE_DRM_CLS_DESCRIPTION, &description_flds);

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 69

Example 4: Example Code (continued)Example 4: Example Code (continued)

 strcpy(description_flds.u.Description.abstract.characters,
 “Lake Eola, Geometry”);
 description_flds.u.Description.abstract.length =
 strlen(“Lake Eola, Geometry ”);

 ret = SE_PutFields(description_obj, &description_flds);

 ret = SE_AddComponentRelationship(root_obj, description_obj, NULL);

 /* create the Geometry Objects under the Environment Root. */
 create_environment_root_objects(xmittal, root_obj);

 ret = SE_FreeObject(root_obj);
 ret = SE_FreeObject(description_obj);

 ret = SE_CloseTransmittal(xmittal);
}

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 70

Example 5: Feature RepresentationExample 5: Feature Representation
and Elevationand Elevation

We want to create a feature representation of LakeWe want to create a feature representation of Lake
Eola complete with elevation dataEola complete with elevation data

• A feature representation simply uses different DRM objects,
such as Point_Feature and Areal_Feature to represent
trees, lakes, fountains, footpaths etc.

• In this Transmittal, elevation data is stored in a <Property
Grid>, which is a <Data Table>.

• To do this we need to know:
– What we previously learned about insertion.
– How to create and add cells to a <Data Table>.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 71

Example 5: Feature RepresentationExample 5: Feature Representation
and Elevationand Elevation

• Step 1: Open the Transmittal and create the Root Object.
• Step 2: Use the same functions introduced in the geometry

 example to create the feature objects.
• Step 3: Create the <Property Grid> object and all its <Axis>

 and <Table Property Description> objects.
• Step 4: Add the elevation data to the <Property Grid>.

Steps to create our featureSteps to create our feature
representation of Lake Eolarepresentation of Lake Eola

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 72

Example 5: Feature RepresentationExample 5: Feature Representation
and Elevation [3 of 3]and Elevation [3 of 3]

• SE_AllocDataTableData()
• SE_PutDataTableData()
• SE_GetCellCountForSubExtent()

New functions needed to create ourNew functions needed to create our
feature representation of Lake Eolafeature representation of Lake Eola

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 73

SE_Return_Code SE_AllocDataTable
(
 SE_Object data_table,
 SE_Data_Table_Sub_Extent *sub_extent,
 SE_Integer_Unsigned element_count,
 const SE_Integer_Positive tbl_prop_descr_num[],
 SE_Store *store,
 const SE_Data_Table_Data **dt_data_ptr
);

Example 5: Inserting dataExample 5: Inserting data
into the <Data Table>into the <Data Table>

• Data is organized the same as for SE_GetDataTableData();
as an array of SE_Data_Table_Data structures which each
point to an array of data for the element.

• As a convenience for allocating these arrays, the function
SE_AllocDataTableData is provided.

• The dt_data_ptr is set with the memory managed by the
Store passed in.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 74

SE_Return_Code SE_PutDataTableData
(
 SE_Object data_table,
 SE_Data_Table_Sub_Extent *sub_extent,
 SE_Integer_Unsigned element_count,
 const SE_Integer_Positive tbl_prop_descr_num[],
 const SE_Data_Table_Data *dt_data_in_ptr
);

Example 5: Inserting dataExample 5: Inserting data
into the <Data Table>into the <Data Table>

• All the Axis and Table Property Description objects must
be created as components of the data table before the cell
data is added.

• Once the array’s of data in SE_Data_Table_Data have
been set with the element data to be put into the data table,
the function SE_PutDataTableData is called.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 75

void AddDataTableCells(SE_Object data_table_obj,
 SE_Data_Table_Sub_Extent *sub_extents,
 SE_Store store,
 EDCS_Long_Float *elev_data
{
SE_Return_Code ret;
SE_Integer_Unsigned elev_tpd_indx=1; // data table has only 1 element for elevation
SE_Data_Table_Data *dt_data;

 ret = SE_AllocDataTableData(data_table_obj, sub_extents,
 1, // 1 element to allocate
 &elev_tpd_indx, // element is 1st Table Prop Description
 store, &dt_data);
 int cell_cnt = SE_GetCellCountForSubExtent(sub_extents);

 for(int i=0 ; i < cell_cnt; i++)
 {
 dt_data[0].value_type = SE_DTD_VT_SINGLE_FLOAT;
 gridData[0].u.single_float_values[i] = elev_data[i];
 }

 ret = SE_PutDataTableData(data_table_obj, sub_extents,
 1, &elev_tpd_indx, dt_data);
// dt_data is freed when the store is freed or reused.
}

Example 5: Code to insert data intoExample 5: Code to insert data into
the <Data Table>the <Data Table>

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 76

Example 6: Editing TransmittalsExample 6: Editing Transmittals

We want to edit our feature Transmittal. WeWe want to edit our feature Transmittal. We
want to change the <Description>, andwant to change the <Description>, and

Replace a Tree with a Building.Replace a Tree with a Building.

• Our building will be a <Feature Model Instance>
(FMI) of a <Feature Model> that is already in our
<Model Library>.

• To do this we need to know:
– How to open a Transmittal for update.
– How to change the fields of an existing object.
– How to delete relationships.
– How to remove objects from a Transmittal.
– How to add new objects to an existing Transmittal.
– How to create associate relationships.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 77

 Example 6: Editing Transmittals [2 of 3] Example 6: Editing Transmittals [2 of 3]

• Step 1: Open the Transmittal in update mode.
• Step 2: Get the <Description> object.
• Step 3: Put the new fields in the same manner as example 1.
• Step 4: Get the <Point Feature> representing the tree we are

 chopping down.
• Step 5: Remove the component relationship between the

 <Point Feature> and its parent.
• Step 6: Remove the <Point Feature>.
• Step 7: Create a <FMI> object to represent the building we

 are putting up.
• Step 8: Add the <FMI> to the Transmittal.
• Step 9: Create an association relationship from the <FMI> to

 the <Feature Model>.

Steps to editing our feature TransmittalSteps to editing our feature Transmittal

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 78

 Example 6: Editing Transmittals [3 of 3] Example 6: Editing Transmittals [3 of 3]

• SE_OpenTransmittalByFile()
• SE_PutFields()
• SE_RemoveFromTransmittal()
• SE_RemoveComponentRelationship()
• SE_RemoveObjectTree()
• SE_CreateObject()
• SE_AddAssociateRelationship()

Functions needed to edit ourFunctions needed to edit our
feature Transmittalfeature Transmittal

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 79

Example 6: Editing Object FieldsExample 6: Editing Object Fields

• Pass SE_AC_MODE_UPDATE as the access
mode to SE_OpenTransmittalByFile().

• Using functions from the Extraction API, obtain
the SE_Object for the <Description>.

• Set new field values in a SE_Fields type, and
call SE_PutFields just the same as in create
mode.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 80

Example 6: Removing RelationshipsExample 6: Removing Relationships

• Obtain the aggregate and component SE_Objects with the
relationship to break.

• Call SE_RemoveComponentRelationship().
– Note: SE_RemoveAssociateRelationship() exists for

removing associate relationships.
• This does NOT remove objects from the Transmittal. If this

is the only relationship to the component object and it is
not removed from the transmittal, then the object will
become an orphaned object that exists in the transmittal
with no way to access it.

SE_Return_Code SE_RemoveComponentRelationship
(
 SE_Object aggregate_object,
 SE_Object component_object,
 SE_Object link_object
);

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 81

Example 6: Removing ObjectsExample 6: Removing Objects

• Obtain the SE_Object to remove.
• Call SE_RemoveFromTransmittal().
• This does NOT remove existing relationships to the object.

– Be careful not to leave dangling objects or references.
– I f we want to remove the whole sub-tree below the object, then instead call

the level 1 function SE_RemoveObjectTree().

SE_Return_Code SE_RemoveFromTransmittal
(
 SE_Object old_object,
 SE_Transmittal transmittal
);

SE_Status_Code SE_RemoveObjectTree(SE_Object start_object);

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 82

Example 6: Adding New ObjectsExample 6: Adding New Objects

• Pass SE_AC_MODE_UPDATE as the access
mode to SE_OpenTransmittalByFile().

• Using functions from the Extraction API, obtain
the SE_Object that will be the parent of the new
<FMI> object.

• Call SE_CreateObject() to the create the FMI
just the same as in Create mode.

• Set field values of the <FMI>, and call
SE_PutFields just the same as in Create mode.

• Call SE_AddComponentRelationship() from the
<FMI’s> parent to the <FMI>.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 83

 Example 6: Adding Associate Relationships Example 6: Adding Associate Relationships

• Obtain <Feature Model> of the building in the
model library.

• Call SE_AddAssociateRelationship().
• Pass NULL for the link object, since there is no

link object for a <FMI> => <Feature Model>
associate relationship.

• Pass SE_FALSE for make_two_way, since this
will only be a one-way associate relationship.

SE_Return_Code SE_AddAssociateRelationship
(
 SE_Object from_object,
 SE_Object to_object,
 SE_Object link_object,
 SE_Boolean make_two_way
);

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 84

void ChopDownTree(SE_Transmittal xmittal, SE_Object tree_parent_obj,
 SE_Object tree_obj, SE_Object bldg_model_obj)
{
SE_Return_Code ret;
SE_Object bldg_fmi_obj;

 ret = SE_RemoveComponentRelationship(tree_parent_obj, tree_obj, NULL);

 ret = SE_RemoveFromTransmittal(tree_obj, xmittal);

// We could replace the previous 2 lines of code with 1 call to SE_RemoveObjectTree(tree_obj);
//
 ret = SE_CreateObject(xmittal, SE_DRM_CLS_FEATURE_MODEL_INSTANCE,
 &bldg_fmi_obj);

 ret = SE_AddComponentRelationship(tree_parent_obj, bldg_fmi_obj, NULL);

 ret = SE_AddAssociateRelationship(bldg_fmi_obj, bldg_model_obj, NULL, SE_FALSE);
}

 Example 6: Example Code Example 6: Example Code

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 85

Example 7: Using ITRExample 7: Using ITR

We want the geometry representationWe want the geometry representation
to include the elevation data from theto include the elevation data from the

feature representationfeature representation

• There are 2 ways of creating an ITR reference.
– The referenced object is accessible.
– The referenced object is NOT accessible.

• We will need to know how to give a transmittal a URN name
and how to publish objects in the transmittal.

• If the reference transmittal is not accessible, then we will
need to know:
– How to create an unresolved object used to create a

component relationship.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 86

Example 7: Creating an ITR ReferenceExample 7: Creating an ITR Reference

• Step1 : Open the geometry representation Transmittal for
 update.

• Step 2: Open the feature representation Transmittal for update.
• Step 3: Give the feature Transmittal a URN Name.
• Step 4: Create and add a <Property Grid Hook Point> (PGHP) to

 the geometry representation.
• Step 5: Use an Iterator to find the <Property Grid> (PG) in the

 feature representation.
• Step 6: Publish the PG object.
• Step 7: Call SE_AddComponentRelationship() with the

 <PGHP> and the <PG> objects to make the relationship
 just as if the objects were in the same Transmittal. We
 don’t need to specify ITR; it is automatic.

Steps to create an ITR reference if theSteps to create an ITR reference if the
referenced object is accessiblereferenced object is accessible

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 87

Example 5: Creating an ITR ReferenceExample 5: Creating an ITR Reference

• SE_SetTransmittalName()
• SE_PublishObject()
• SE_GetUnresolvedObjectFromPublishedLabel()

New functions needed to make ourNew functions needed to make our
<Property Grid> available to other<Property Grid> available to other

transmittalstransmittals

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 88

Example 7: Publishing ObjectsExample 7: Publishing Objects

SE_Return_Code SE_PublishObject
(
 SE_Object object_in,
 const char *label_in
);

• In order for one Transmittal to be referenced from another, it must
have a URN name..

• SE_SetTransmittalName() gives an open Transmittal a valid URN
name.
– Example URN: urn:x-sedris:saic:LakeEola.stf:1.

• In order to reference an object from a different Transmittal, an object
must be published with a label.
– The function SE_PublishObject() does this.

SE_Return_Code SE_SetTransmittalName
(
 SE_Transmittal transmittal,
 const char * transmittal_name
);

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 89

Example 7: Creating an ITR ReferenceExample 7: Creating an ITR Reference

• Step 1: Open the geometry representation Transmittal for
 update.

• Step 2: Create and add a <PGHP> to the geometry representation.
• Step 3: Call SE_GetUnresolvedObjectFromPublishedLabel() to create an

unresolved SE_Object with the <PG’s> object label and the feature
representation Transmittal’s URN name.

• Step 4: Call SE_AddComponentRelationship() with the <PGHP>
 and the <PG> SE_Objects.

• Note: The feature representation at some point must still be assigned the
URN and have the PG published with the same label.

Steps to create an ITR reference if theSteps to create an ITR reference if the
referenced object is NOT accessible.referenced object is NOT accessible.

SE_Return_Code SE_GetUnresolvedObjectFromPublishedLabel
(
 const char *transmittal_name,
 const char *object_label,
 const char implementation_identifier[],
 SE_Object *object_out_ptr
);

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 90

SE_Return_Code SE_PutImageData
(
 SE_Object image,
 SE_Integer_Unsigned start_texel_horizontal,
 SE_Integer_Unsigned start_texel_vertical,
 SE_Integer_Unsigned start_texel_z,
 SE_Integer_Unsigned stop_texel_horizontal,
 SE_Integer_Unsigned stop_texel_vertical,
 SE_Integer_Unsigned stop_texel_z,
 SE_Short_Integer_Unsigned mip_level,
 SE_Integer_Unsigned byte_count,
 const unsigned char *data_in_ptr
);

Miscellaneous Insertion Topics:Miscellaneous Insertion Topics:
Inserting Image DataInserting Image Data

• The <Image> object must have first been
created and committed to the transmittal.

• Memory for data_in_ptr is managed by the user
application.

• Word order of the <Image> data is determined
by the image object’s field values.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 91

Introduction to the SEDRIS
C++ API

Introduction to the SEDRIS
C++ API

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 92

TopicsTopics

• C++ API History
• C++ API Goals
• C++ API Overview
• C++ API Benefits
• C++ API Classes
• Code comparisons with C AP I

– Data extraction example
– Data insertion example

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 93

C++ API HistoryC++ API History

• A C++ prototype was shown at STC 2002 in Vancouver.
– Prototype generated a lot of interest.
– In parallel, existing programs using SEDRIS requested an object-

oriented API.

• Requirements gathering and planning started in late 2002
and continued through 2003.

• A working prototype based on the current SEDRIS 3.1.2
SDK was used to finish fleshing out the C++ API and used
for internal testing in order make sure we got it right.

• Completed C++ API will be released as part of the SEDRIS
4.0 SDK package.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 94

C++ API GoalsC++ API Goals

• To meet current and future customer demand for object-
oriented (OO) implementations.

• To expose the object-oriented aspects of the DRM at the
interface level. For example, using C++ class hierarchies
for DRM objects.

• To balance the use of OO facilities vs. providing consistency
with the current interfaces and capabilities.

• To minimize the economic impact (maintainability,
development) of multiple baseline implementations.

• To provide a portable interface/implementation to other
languages (e.g. Java) and access through COM interfaces

• To ease the learning curve for new users and users of OO
languages.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 95

C++ API Goals (C++ API Goals (cont’dcont’d))

• To at least maintain the level of robustness and
performance of the current implementation.

• To provide for an efficient and direct access to field data by
using DRM class-specific accessor methods.

• To provide an automated and more efficient memory
management system.

• To provide a more consistent error handling and logging
mechanism.

• To allow for reduced user code complexity by exploiting
features of the implementation language.

• To provide extensibility where appropriate, such as
specialized iterators and search filters.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 96

C++ API OverviewC++ API Overview

• Similarly to the C API, the OOI C++ API is a set of header
files and shared/static libraries for all supported platforms.

• All C++ classes are accessed through the “sedris”
namespace to avoid name collisions with other libraries.

• All C++ API functions are documented in the header files,
and also contain sample code that demonstrate their use.
– HTML documentation is generated from the header files for easier

browsing using the doxygen tool.
• Reads and writes the same SEDRIS Transmittal Format

that the C API does.
– All STF transmittals can be accessed with either API, provided they

were created with the same SDK version (ie, the 4.0 C++ API will not
read version 3.1.2 transmittals.)

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 97

C++ API BenefitsC++ API Benefits

• Allows user access to an object-oriented programming
interface.

• Memory management is taken care of by the C++ API.
– No worrying about SE_Stores.

• Simplified methods for accessing fields, rather than C
structure based access.

• Error handling advantages
– Can always trap API exceptions without a lot of code.
– Exception mechanism handles clean up on errors:

• Outstanding object references
• Closing transmittals

• Possible to extend API class functionality:
– Class inheritance
– Operator overloading

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 98

C++ API ClassesC++ API Classes

• seWorkspace
– Groups access to transmittals in a common setup.

• seTransmittal
– Access to transmittal data, creates DRM objects.

• seObject
– Manipulates DRM object instances. The DRM hierarchy of classes is

derived from seDRMBase , which is in turn derived from seObject .
• seIterator

– Sequential access to DRM objects.
• seException

– Exception handler class thrown from all API functions when an error
occurs.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 99

seWorkspace (1 of 2)seWorkspace (1 of 2)

• Used to manage transmittals under a common “theme”.
– Opens transmittals

• seWorkspace::openTransmittalByFile
• seWorkspace::createTransmittal
• seWorkspace::editTransmittal
• seWorkspace::openTransmittalByURN

– Specify API memory model
• seWorkspace::setMemoryModel

– Manages transmittals
• seWorkspace::getOpenedTransmittalCount
• seWorkspace::getOpenedTransmittal

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 100

seWorkspace (2 of 2)seWorkspace (2 of 2)

• Specifies ITR behaviour for all transmittals in workspace
– seWorkspace::setITRResolverPath

• This fulfills the same purpose as the SEDRIS_RESOLVER_PATH
environment variable in the C API.

– seWorkspace::setITRBehaviour
• Same as the C API.

– seWorkspace::setAccessModeInheritance
• Sets if transmittals reached via an ITR link should have the same access

mode as the transmittal originally opened by the user.

• Creates unresolved objects to use to reference other
transmittals via ITR
– seWorkspace::createUnresolvedObject

• Creates a special seObject that represents an ITR reference into
another transmittal without having the other transmittal present.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 101

seTransmittal (1 of 2)seTransmittal (1 of 2)

• Used to manipulate SEDRIS transmittals, and to
create/access the DRM objects in the transmittal
hierarchy

• Accesses and sets the transmittal’s root object
– seTransmittal::setRootObject
– seTransmittal::getRootObject

• Creates and deletes DRM objects
– seTransmittal::createObject
– seTransmittal::removeObject

• Accesses objects via object ID
– seTransmittal::getObjectFromID

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 102

seTransmittal (2 of 2)seTransmittal (2 of 2)

• Manages various ITR information at the transmittal
level.
– Accesses all published objects in the transmittal.

• seTransmittal::getPublishedObject
• seTransmittal::getPublishedObjectsIterator

– Manages the transmittal’s URN
• seTransmittal::getURN
• seTransmittal::setURN

– Accesses all ITR reference (to other transmittals) information
• seTransmittal::getITRReferenceCount
• seTransmittal::getITRReference
• seTransmittal::getITRReferenceLabelCount
• seTransmittal::getITRReferenceLabel

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 103

seObject (1 of 3)seObject (1 of 3)

• Encapsulates access to all fields and data contained in
DRM transmittal objects, including relationships to other
DRM transmittal objects.

• DRM type and field information
– seObject::getDRMClass
– seObject::getFields
– seObject::setFields

• DRM relationship information
– Components

• seObject::hasComponents
• seObject::getComponent
• seObject::getComponentIterator
• seObject::addComponent
• seObject::removeComponent

– Same 5 calls for Associates and Aggregates

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 104

seObject (2 of 3)seObject (2 of 3)

• Provides various utility methods for each object.
• Access to Object IDs

– seObject::getID

• User data mechanism
– seObject::setUserData
– seObject::getUserData

• Other utility methods
– seObject::isSameAs
– seObject::getTransmittal

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 105

seObject (3 of 3)seObject (3 of 3)

• Provides ITR related methods:
– seObject::isPublished

• Check to see if an object is published so it can be referenced from other transmittals.
– seObject::publish

• Publish the object so it can be referenced from other transmittals.
– seObject::unpublish

• Remove the object from the list of objects that can be referenced from other transmittals.
– seObject::getPublishedLabelCount

• Returns how many different labels the object is published as.
– seObject::getPublishedLabel

• Gets each specific label the object was published as.
– seObject::isResolved

• Determine if an object is resolved or not.
– seObject::resolve

• If an object was retrieved via ITR, and the ITR behavior is not set to
SE_ITR_BHVR_RESOLVE, then this function will resolve the object.

– seObject::getUnresolvedTransmittalURN
• Gets the transmittal URN that the unresolved object references.

– seObject::getUnresolvedObjectLabel
• Gets the object label that the unresolved object references.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 106

seDRMBase Hierarchy (1 of 3)seDRMBase Hierarchy (1 of 3)

seDRM...

seObject

seDRMAccess seDRMWorld3x3

seDRMBase

… …

seDRM...seDRMLocation3D seDRM...

…

seDRM...

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 107

seDRMBase Hierarchy (2 of 3)seDRMBase Hierarchy (2 of 3)

• All seDRMBase derived objects inherit from the seObject
class.
– All seDRMBase objects share all seObject methods.

• Each DRM class has it’s own C++ API class under the
seDRMBase hierarchy
– seDRMTransmittalRoot
– seDRMModelLibrary
– seDRMEnvironmentRoot
– etc.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 108

seDRMBase Hierarchy (3 of 3)seDRMBase Hierarchy (3 of 3)

• Each seDRMBase derived class has direct access to
individual field elements defined by the DRM class.
– For example, the seDRMTransmittalRoot has the following field

methods:
• get_name() / set_name()
• get_major_DRM_version() / set_major_DRM_version()
• get_minor_DRM_version() / set_minor_DRM_version()
• get_interim_DRM_version() / set_interim_DRM_version()
• etc…

– Can still access the SE_Fields structure via the inherited seObject
method:

• seObject::getFields / setObject::setFields

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 109

seIteratorseIterator

• Generalized iterator for seObjects.
– Used to iterate through component objects, associate objects, and

aggregate objects.
• Much simpler than the C API iterator concepts:

– Only one level deep
– Can only filter by DRM class type
– ITR behaviour is set at the workspace level

• Created by the seObject and one special case:
– seObject::getComponentIterator
– seTransmittal::getPublishedObjectsIterator

• Functions
– seIterator::isCompleted
– seIterator::getCount
– seIterator::getNext

• With or without a link object parameter
– seIterator::getNthNext

• With or without a link object parameter

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 110

seExceptionseException

• The general exception class thrown from failed methods.
• Exception contains two pieces of information:

– Error code (FILE_ERROR, TRANSMITTAL_UNACCESSIBLE, etc)
• seException::getCode

– Description string (freeform)
• seException::getWhat

• Must be caught at the application/library level code, otherwise
application will exit.
– Gives ability to clean up after the API encounters an error.

try
{
 seWorkspace wksp;
 seTransmittal xmtl;
 wksp::openTransmittalByFile(“bad_path.stf”, xmtl)
}
catch(seException & e)
{
 cout << “Exception was thrown: “ << e.getWhat << “(code: “ << e.getCode() << “)” << endl;
 // clean up application memory and continue
}

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 111

Code Comparison: Example 1Code Comparison: Example 1

 Read the <Description> from the Read the <Description> from the
sample Lake Eola Transmittalsample Lake Eola Transmittal

• The description is stored in the fields of a
SE_DRM_CLS_DESCRIPTION object which the DRM
requires to be a component of the <Transmittal Root>
object.

• To do this we need to know:
– How to open and close a Transmittal for reading.
– How the C++ API handles exceptions, status codes, and error

descriptions.
– How to access objects by traversing relationships.
– How to access fields of an object.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 112

Example 1: C API CodeExample 1: C API Code
main() {
SE_Return_Code ret;
SE_Transmittal xmittal;
SE_Object root_obj, desc_obj;
SE_Store store;
SE_FIELDS_PTR desc_flds;

 ret = SE_OpenTransmittalByFile(“Lake_Eola.stf”, “stf”,
 SE_AC_MODE_READ_ONLY, &xmittal);
 ret = SE_GetRootObject(xmittal, &root_obj);

 ret = SE_GetComponent3(root_obj, SE_DRM_CLS_DESCRIPTION, &desc_obj);

 ret = SE_CreateStore(“stf”, &store);

 ret = SE_GetFields(desc_obj, store, &desc_flds);

 printf(“Transmittal Description %s\n”, desc_flds->u.Description.abstract.characters);

 ret = SE_FreeStore(store);
 ret = SE_FreeObject(root_obj);
 ret = SE_FreeObject(desc_obj);

 ret = SE_CloseTransmittal(xmittal);
}

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 113

Example 1: C++ API CodeExample 1: C++ API Code

main()
{
 seWorkspace workspace;
 seTransmittal xmittal;
 seDRMTransmittalRoot root_obj;
 seDRMDescription desc_obj;

 try
 {
 workspace.openTransmittalByFile(“Lake_Eola.stf”, xmittal);
 xmittal.getRootObject(root_obj);

 if(root_obj.getComponent(desc_obj))
 {
 cout << “Transmittal Description “ << desc_obj.get_description().characters << endl;
 }

 xmittal.close();
 }
 catch(seException & e)
 {
 cout << “An error occurred: “ << e.getWhat() << endl;
 }
}

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 114

Example 1: SummaryExample 1: Summary

• No longer need to worry about memory management.
– Constructors and destructors handle it for you.

• No more SE_FreeObject calls.

• Didn’t have to check the status code of every function. One
try… catch block handles everything.

• Didn’t have to remember “SE_AC_MODE_READ_ONLY”
everytime you want to open a transmittal.

• Didn’t have to specify SE_DRM_CLS_DESCRIPTION
because a seDRMDescription object reference was passed
into root_obj.getComponent.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 115

Code Comparison: Example 2Code Comparison: Example 2

Retrieve all of the <Polygons> in the sampleRetrieve all of the <Polygons> in the sample
Lake Eola TransmittalLake Eola Transmittal

• We do this by recursively retrieving components
from the <Transmittal Root> on down.

• This example will introduce:
– seIterators
– How to create and use seIterators recursively with help

from the DRM.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 116

Example 2: C API Code to retrieveExample 2: C API Code to retrieve
<Polygons><Polygons>

void FindPolygons{ SE_Transmittal xmittal, SE_Object root_obj)
{
SE_Return_Code ret;
SE_Search_Rule polygon_search_rules[] =
{
 SE_DRM_CLASS_MATCH(POLYGON) /* Infinite depth */
}
SE_Search_Filter search_filter;
SE_Iterator iterator;
SE_Object polygon_obj;

 ret = SE_CreateSearchFilter(xmittal, polygon_search_rules, &search_filter);

 ret = SE_InitalizeComponentIterator3(root_obj, search_filter, &iterator);

 while(SE_IsIteratorEmpty (iterator) == SE_FALSE)
 {
 ret = SE_GetNextObject(iterator, &polygon_obj, NULL ;
/* process the polygon object */

 ret = SE_FreeObject(polygon_obj);
 }
 ret = SE_FreeIterator(Iterator);
 ret = SE_FreeSearchFilter(search_filter);
}

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 117

Example 2: C++ API Code to Retrieve PolygonsExample 2: C++ API Code to Retrieve Polygons

void FindPolygons(seObject current_obj){

 seIterator iterator;
 seObject child_obj;
 SE_DRM_Class drm_type;

 current_obj.getComponentIterator(iterator);

 while(!iterator.isCompleted()){

 iterator.getNext(child_obj);
 drm_type = child_obj.getDRMClass();

 if(drm_type == SE_DRM_CLS_POLYGON){
 /* process the polygon object */

 }
 else{

/* prune search paths that won’t result in finding <Polygons> */
 if(SE_ShortestAggPath[drm_type][SE_DRM_CLS_POLYGON] != -1)
 {
 FindPolygons(child_obj); /* recurse down the transmittal tree */
 }
 }
 }
}

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 118

Example 2: SummaryExample 2: Summary

• No search rules or search filters.
• Had to use recursion to produce same functionality as the C

AP I search filter mechanism.
• Also had to use SE_ShortestAggP ath to limit wasteful

recursion.
– C API uses SE_ShortestAggPath under the covers.
– Had to use getDRMClass to use in SE_ShortestAggPath.

• Could utilize or extend the C++ seIterator class to create a
new iterator class that goes many levels deep and/or
provides more filtering mechanisms.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 119

Code Comparison: Example 3Code Comparison: Example 3

We want to create a geometryWe want to create a geometry
representation of Lake Eolarepresentation of Lake Eola

• To do this we need to know:
– How to open a Transmittal for creation.
– How to create SEDRIS objects.
– How to set the fields of an object.
– How to create relationships between objects.
– How to set the Root Object in the Transmittal.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 120

Example 3: C API CodeExample 3: C API Code

main()
{
SE_Return_Code ret;
SE_Transmittal xmittal;
SE_Object root_obj, description_obj;
SE_Fields root_flds, description_flds;

 ret = SE_OpenTransmittalFile(“Lake_Eola.stf, “stf”,
 SE_AC_MODE_CREATE, &xmittal);

 ret = SE_CreateObject(xmittal, SE_DRM_CLS_TRANSMITTAL_ROOT,
 &root_obj);
 ret = SE_SetRootObject(xmittal, root_obj, NULL);

 ret = SE_CreateObject(xmittal, SE_DRM_CLS_DESCRIPTION,
 &description_obj);
 ret = SE_SetFieldsToDefault(SE_DRM_CLS_DESCRIPTION, &description_flds);

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 121

Example 3: C API Code [2 of 2]Example 3: C API Code [2 of 2]

 strcpy(description_flds.u.Description.abstract.characters,
 “Lake Eola, Geometry”);
 description_flds.u.Description.abstract.length =
 strlen(“Lake Eola, Geometry ”);

 ret = SE_PutFields(description_obj, &description_flds);

 ret = SE_AddComponentRelationship(root_obj, description_obj, NULL);

 /* create the Geometry Objects under the Environment Root. */
 create_environment_root_objects(xmittal, root_obj);

 ret = SE_FreeObject(root_obj);
 ret = SE_FreeObject(description_obj);

 ret = SE_CloseTransmittal(xmittal);
}

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 122

Example 3: C++ API Code to create objectsExample 3: C++ API Code to create objects

main()
{
 try
 {
 seWorkspace wksp;
 seTransmittal xmittal;
 seDRMTransmittalRoot root_obj;
 seDRMDescription description_obj;

 wksp.createTransmittal(“Lake_Eola.stf ”, xmittal);
 xmittal.createObject(root_obj);
 xmittal.setRootObject(root_obj):

 xmittal.createObject(description_obj);
 description_obj.setFields(SE_DESCRIPTION_FIELDS_DEFAULT);
 description_obj.set_abstract(“Lake Eola, Geometry ”);

 root_obj.addComponent(description_obj);

 /* create geometry objects under <Environment Root> */
 create_environment_root_objects(xmittal, root_obj);
 }
 catch(seException & e)
 {
 cout << “An error occurred: “ << e.getWhat() << endl;
 }
}

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 123

Example 3: SummaryExample 3: Summary

• Simple createTransmittal call replaces
SE_OpenTransmittalByFile call with
“SE_AC_MODE_CREATE”.

• Instead of manipulating the SE_Fields object and then call
SE_PutFields, we manipulate the fields via direct methods
on the seDRMDescription object.

• SE_AddComponentRelationship is replaced with
addComponent
– Link object is now optional, no NULL parameter required.

• Transmittal is closed when the workspace drops out of
scope.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 124

C++ SummaryC++ Summary

• We’ve covered the basics of the C++ AP I
– C++ API is very different than the C API, but DRM classes and

structures are the same for both, so code will be structured very
similarly.

– C++ API handles a lot of memory management issues that you
have to worry about with the C API

– C++ API has uses exception handling rather than return codes for
error conditions.

• C++ API will be released with the upcoming SEDRIS 4.0
SDK release.

• Where to go from here:
– Advanced Use of the SEDRIS SDK tutorial will be using the C++

API.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 125

SummarySummary

• We have:
– Highlighted API capabilities.
– Demonstrated API functionality through small applications and

routines.
– Introduced and explained how to use API functions and data

types.
– Identified common mistakes in the use of the API.

• You should:
– Understand the capabilities of the SEDRIS API.
– Recognize the key functions and data structures.
– Know where to go for more information:

• www.sedris.org
• help@sedris.org
• How To Produce and Consume Transmittals tutorial

