Fundamentals for Accessing
Transmittals

http://www.sedris.org/

SEDRIS™ Technology Conference
Lake Buena Vista, FL
06 January 2004

Gregory Hull Kevin Wertman
SAIC SAIC
greg.a.hull@saic.com kevin.m.wertman@saic.com

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 1

About This Tutorial

DESCRIPTION

This tutorial covers the fundamentals of accessing SEDRIS transmittals through the
use of the SEDRIS transmittal access C and C++ APIs. Traversal strategies, object
management, and APl behaviors are discussed applicable to both the C and C++
APIs. Pseudo code and algorithms for performing common actions across a range of
applications are provided. The mechanics of the APIs are provided w ith an
introduction to the C functions and data structures, as well as the C++ classes and
methods. Coding samples in both languages are provided.

WHO SHOULD ATTEND

Software engineers who intend to design and implement SEDRIS-based applications,
or those interested in learning the basic functionality of the SEDRIS APIs.

PREREQUISITE

A w orking knowledge of C/C++, or other programming languages is strongly
recommended. Prior attendance at either the "Introduction to SEDRIS for Managers"
or "SEDRIS - The Technology Components” tutorial is recommended.

WHAT TO EXPECT

Attendees gain a fundamental understanding of the issues to access SEDRIS
transmittals. The attendee also gains basic insight into the functionality and
mechanics of the SEDRIS APIs.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 2

Agenda

SEDRIS C API Background and
Fundamentals

C API Extraction component
C API Insertion component

Introduction to the SEDRIS C++ API
Summary

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 3

Purpose and Scope

Purpose
— Understand the capabilities of the SEDRIS API.
— Introduce the key functions and data structures.

Scope
— Highlight API capabillities.
— Demonstrate API functionality through small applications and
routines.
— Introduce and explain how to use API functions and data types.

Does NOT Cover

Issues of good transmittal design or specific strategies of
consumptlon or production.

— Every API call, refer to SEDRIS Reference Manual and source
code header files for complete description.

— EDCS, SRM or DRM API functions.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 4

SEDRIS C API
Background and
Fundamentals

Topics

Copyright © 2004 SEDRIS™

Basic Definitions
APl Components
APl Conventions
API| Data Types
Basic Tools
Reference Material

Fundamentals for Accessing Transmittals

06 January 2004 6

Basic Definitions

Application Program Interface (API)

— An encapsulation of functionalities common to many
applications into reusable modules.

API Implementation

— The instantiation of an API's functionality in software that
IS bound to a software language.

SEDRIS Transmittal

— A collection of SEDRIS objects conforming to the DRM
and accessible thru the SEDRIS API.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 7

SEDRIS APl Components

Transmittal Access API
— Cand C++ versions

— Level O

« Data Extraction functions provide methods to search and access
DRM objects in a SEDRIS Transmittal.

 Data Insertion functions provide ability to create or remove DRM
objects and relationships.

— Level 1 — Common convenience functions built on top
of the Level O APl functions.

DRM - Provides access to meta-data describing
DRM classes, data types and relationships.

EDCS API
SRM API

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 8

SEDRIS C API Conventions

Function and data type naming: SE_followed by function
mnemonic, first letter of each word capitalized.

(SE CreateObject, SE_Object)

SEDRIS constants and enumvalues are in ALL_CAPS
(SE_ DRM _CLS TRANSMITTAL_ROQT)

Function return status: The return type of most functions is
SE Return_Code which is either SE RET_CODE_SUCCESS or
SE RET _CODE_FAILURE.

Function returned data:

— Most data returned from the APl is done via pointers to an opaque
type. (SE_Object)

— All data returned through opaque types is freed using a
corresponding API function. (SE_FreeObject)

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 9

SEDRIS C API Data Types

Basic Data Types:

— Promote machine/compiler independence

— Examples: SE Integer_Unsigned, SE Long_Float,
SE Boolean, SE _Short_Integer_Positive

Opaque Types:

— Promote implementation independence through the
hiding of underlying structures

— Commonly referred to as handles

— Examples: SE_Transmittal, SE_Object, SE_ Iterator,
SE_Store, SE_Search_Filter, SE_Search_Boundary

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals

06 January 2004 10

SEDRIS C API Data Types

SE Fields is a Tagged Union
— Contains all field information for every DRM object.

— Tag of type SE_DRM Class specifies the DRM class of
the object.

— The tag is used to select the correct union member to
access.

— Example for <Transmittal Root>.
e fields.tag = SE_DRM_CLS TRANSMITTAL_ROOT
 fields.u.Transmittal Root

SE_String
— The characters field stores the string as an array of
SE Characters.
— The length field stores the length of the array.
— SE Locale gives language and country information.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 11

Basic Tools

Core applications

— Depth

— Syntax Checker, Rules Checker
— Transmittal Browser

— stf test, itr_test

— Focus

— Model Viewer

— EDCS Query Tool

SEDRIS 3.1 to 4.0 Converter

— Convert STF transmittals created from the SEDRIS version
3.1 DRM and STF Implementation to the 4.0 version.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 12

Reference Material

www.sedris.org/api.htm

emall reflectors
— help@sedris.org
— se-coders@sedris.org (primarily for associates)
The at
www.sedris.org/pro2trpl.ntm
— Defines all functions and arguments for the API.
— Defines all data types used by the AP

— Listed by DRM, EDCS, Level O, Level 1, and SRM.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals

06 January 2004 13

The Extraction
Component of the
SEDRIS C API

Topics

Extraction capabilities

Example 1: Reading the fields of the sample
Transmittal’s <Description> object

— lllustrates simple traversal methods and the basics of
opening a Transmittal and accessing objects.

Example 2: Traversing with lterators
— Retrieving all <Polygons> in the Transmittal.

Example 3: Retrieving elevation data from a
<Property Grid>
— Learn how to extract data from a <Data Table> object.

Advanced features of component lterators
— Witness the pow er of the SEDRIS API.

Miscellaneous Extraction Features

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 15

Extraction Capabilities

The 3 Examples will cover the following topics:

Retrieving the Root Object
Traversing component relationships
Retrieving the fields for objects
Retrieving cells from <Data Tables>

Selection and filtering of objects via Search
Filters and Spatial Boundaries

Automatic traversal through a Transmittal via
branching criteria

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 16

Example 1: Reading
the <Description>

Read the <Description> from the
sample Lake Eola Transmittal

The description is stored in the fields of a
SE DRM CLS_ DESCRIPTION object which the DRM requires to
be a component of the <Transmittal Root> object.
To do this we need to know:
— How to open and close a Transmittal for reading.
— How the C APl handles status codes and error descriptions.
— About the API's methods of memory management.
o« SE Store’s used to get fields and other object data.
 Memory allocated by the APIthrough opaque data types.
— How to access objects by traversing relationships.
— How to retrieve fields from an object.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 17

Example 1. Reading the
<Description> [20f 3]

Steps to Retrieve the <Description>

o Step 1. Open the Transmittal.
« Step 2: Check the status of step 1.
o Step 3: Get the Root Object.

o Step 4: Get the <Description> as a component
of the <Transmittal Root>.

o Step 5: Create an SE_Store to manage the
memory for the <Description> object fields.

o Step 6: Get the fields from the object.
e Step 7: Free memory.
o Step 8: Close the Transmittal.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 18

Example 1. Reading the
<Description> [3 of 3]

Functions needed to retrieve the
<Description> object

SE CreateStore()

SE OpenTransmittalByFile()
SE GetLastFunctionStatus()
SE GetRootObject()

SE GetComponent3()

SE GetFields()

SE FreeStore()

SE FreeObject()

SE CloseTransmittal()

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 19

Example 1: Managing
Memory with Stores

A Store is an APl data type (SE _Store) created by an application
to manage memory allocated by the API.

A Store manages the memory allocated for:
— An description string for the status of the last function called.
— Obiject’s Field data
— Data Table’s cell data
— Image’s image data
A Store may be reused for better efficiency.

Data managed by a Store is passed back fromthe API
functions in a separate pointer.

Data is valid until the Store is freed or the Store is reused in
another API call.

IMPORTANT: Make sure not to reuse the data after the
Store has been reused or freed!

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 20

Example 1: Creating a Store

SE Return _Code SE OeateStore
(

const char i npl enentation_identifier[],
SE Store *new store_ptr

);
SE CreateStore() creates a Store for the given AP

Implementation.

The APl allocates the SE Store and so must be
freed using SE FreeStore().

SE Return_Code SE FreeStore
(

)

SE Store to free

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 21

Example 1: Opening the Transmittal

SE Return_Code SE penTransmttal ByFile

(

const char file_nane[],

const char I npl enentation_identifier[],
SE Access_Mode access_node,
SE Transm ttal *transmttal out ptr

Copyright © 2004 SEDRIS™

The ‘root’ file of the STF transmittal is passed as the
file_name.

Specify “ stf” as the implementation_identifier.

Specify access mode of SE AC_MODE READ ONLY.

Assigns the Transmittal handle in the SE_Transmittal.
Returns SE_RET _CODE_SUCCESS or
SE RET_CODE_FAILURE.

Fundamentals for Accessing Transmittals

06 January 2004 22

Example 1: Checking the
Function’s Status

SE Return_Code SE CetlLast FunctionStatus
(

SE St atus_Code *| ast _function_stat us,
SE Store store_in,
char **status_descri ption

Assigns last_function_status a status code for the
function call last made to the C AP

— SE_STAT_CODE_SUCCESS usually set w hen the return
code of the function was SE_RET_CODE_SUCCESS.

— Other possible codes depend on the function called. For
example SE_STAT_CODE_TRANSMITTAL_UNACCESSIBLE
may be set for SE_OpenTransmittal().

The status_description, if not NULL, is managed by the
store passed in and will contain extra information about
the kind of failure.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals

06 January 2004 23

Example 1: Getting the Root Object

SE Return_Code SE CGet Root (bj ect
(

SE Transmttal transmttal in,
SE (bj ect *root _object _out ptr
e

The DRM specifies that all Transmittals must
have a Transmittal Root object which is at the
top of the Transmittal’'s hierarchy.

SE GetRootObject() returns the root object as
an SE Object for the opened Transmittal passed
In to the function.

The SE Object is allocated by the API, and so
must be freed when no longer used.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 24

Example 1: Getting Components

SE Return_Code SE Get Conponent 3

(
SE (hj ect obj ect _in,
SE DRM d ass drm cl ass,
SE (bj ect *0obj ect _out

)

This is a three-parameter MACRO which calls the
API function SE_GetComponent() with default values
passed for more advanced options.

Simple to use.
Returns a component of the object passed in.

Can only return the first component of a given type, if
more than one exists.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 25

Example 1: Reading Object Fields

SE Return_Code SE CetFields

(
SE (hj ect obj ect _in,

SE Store store_in,
SE FIELDS PTR *fields out ptr

Field data is returned in a fields_out_ptr, which is
allocated and managed by store_in.

The fields_out_ptr is valid until store_in is either
freed or reused.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 26

Example 1. Freeing Objects

SE_Return_Code SE_FreeObj ect

(
SE _Obj ect ol d _object

)

Called to free memory resources associated with
SE Objects returned by the API.

Does NOT remove the object fromthe
Transmittal.

Needs to be called for every SE Object that has
been returned.

— Even if it is the same object retrieved previously.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 27

Example 1. Closing Transmittals

SE Return_Code SE doseTransmttal
(

SE Transmttal transmttal
);

SE CloseTransmittal() frees memory associated
with the opened Transmittal, and closes it.

Only pass in Transmittals that have been
retrieved with the SE_OpenTransmittal() calls.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 28

Example 1. Example Code

main() {

SE Ret_Code ret;

SE Transmittal xmittal;

SE Object root_obj, desc obj;
SE Sore store;

SE FIELDS PTR desc flds;

ret = SE CreateStore(“stf”, & store);
ret = SE_OpenTransmittalByFile(“Lake Eolagf”, “ gf”,
SE AC_MODE_READ_ONLY, &xmittal);
ret = SE_GetRootObject(xmittal, &root_obj);
ret = £ GetComponent3(root_obj, SE DRM_CLS DESCRIPTION, &desc obj);
ret = SE_GetFields(desc_obj, store, & desc flds);
printf(“ Transmittal Description %s\n” , desc_flds->u.Description.abstract.characters);
ret = SE FreeSore(store); //thismust be done after the printf above!
ret = SE_FreeObject(root_obj);
ret = SE_FreeObject(desc_obj);

ret = SE_CloseTransmittal(xmittal);
}

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals

06 January 2004

29

Example 2: Traversing
with Iterators

Retrieve all of the <Polygons> in the sample
Lake Eola Transmittal

We could do this by iteratively retrieving

components fromthe <Transmittal Root> on
down.

— This would be VERY tedious and inefficient.

This example will introduce:
— lterators

— How to create and use lterators

— How to define search rules, and create search filters to
pass to our lterator

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 30

Example 2: Traversing
with Iterators

Steps to Retrieve <Polygons>

Step 1. Open the transmittal and get the Root Object.

Step 2: Specify SE_Search_Rule for matching
<Polygon> objects.

Step 3: Use the Search Rules to create a SE_Search_Filter.

Step 4: Use the Search Filter and Root Object to create a
component lterator.

Step 5: Call SE_GetNextObject() to traverse through matching
objects (<Polygons>).

Step 6: ... process the <Polygons> ...
Step 7: Free the memory for the object, Search Filter and lterator.
Step 8: Close the transmittal.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 31

Example 2: Traversing
with Iterators

Copyright © 2004 SEDRIS™

New functions needed to retrieve
<Polygons>

SE CreateSearchkFilter()

SE InitializeComponentlterator()
SE IslteratorEmpty()

SE GetNextObject()

SE Freelterator()

SE FreeSearchkFilter()

Fundamentals for Accessing Transmittals

06 January 2004 32

Example 2:
About Ilterators

An lterator provides sequential access to a set of objects matching a
given criteria.

lterators are represented by the opaque data type SE lterator.
Since these are allocated by the AP, they must be freed with the
APl call SE Freelterator.

The APIfunction SE IslteratorEmpty() provides a way to determine
if there are any more objects in the iterator.

The API function SE_GetNextObject() provides a way to step
through the set.

There are 3 types of lterators: component, associate and aggregate,
which traverse the 3 different types of relationships.

More advanced features provide extensive control over selection
process and objects returned via parameters to:

— Simplify access to more complex structures

— Apply conversions to object field data

— Control traversal sequence & branching

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 33

Example 2: Specifying Search Rules

Boolean expressions built using operators SE_AND, SE OR and
SE_NOT, and the following set of matching criteria:

— Object type match. (Abstract or concrete classes are valid.)

— Exact field value match and field value range match.

— Hierarchy depth. Matches objects within a given number of levels from
the base object.

— Component object type match.
— Component exact field value or field value range match.
— Predicates: application functions “ called back” by the user to evaluate
the object.
Implemented as arrays w hich can be initialized with
convenient C Macros.

SE _Search_Rul e pol ygon_rules[] =
{ SE_AND
(SE_DRM CLASS_NMATCH(PCLYQON),
SE_NMAX_SEARCH DEPTH(5)
?SE_EI\D

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 34

Example 2: Creating Search Filters

SE Return _Code SE CreateSearchFilter

(
SE Transm ttal transmttal,
const SE Search Rule rul es[],
SE Search Filter *search filter out ptr
)i

Search Filters can be reused by more than one Iterator.

They are allocated by the APl and must be freed using
SE FreeSearchFilter().

May be freed before the lterator is freed.

SE Return_Code SE FreeSearchFilter
(

),

SE Search Filter search filter

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 35

Example 2: Component Iterators

SE Return_Code SE InitializeConponentlterator3
(

SE_(j ect start_obj ect,
SE Search Filter filter,
SE Iterator *lterator_out _ptr

)

SE InitializeComponentlterator3() creates a component
SE lterator.

The lterator will traverse down from start_object and find
all objects matching the criteria stored in the search filter.

This is a C language macro that resolves to
SE InitializeComponentlterator() with default parameters
passed for more advanced functionality of tterators.

SE lterator is an opaque type that is allocated by the AP,
and so must be freed with SE_Freelterator().

SE Return_Code SE Freelterator
(

),

SE Iterator Iterator

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 36

Example 2: Retrieving Objects
from lterators

SE Return_Code SE_Get Next Obj ect
(

SE Iterator iterator,
SE_(hj ect *next _obj ect,
SE_(bj ect *1i nk_obj ect
);
Objects can be sequentially retrieved from lterators using the API
function SE_GetNextObject().

SE Objects are allocated by the APl and must be freed.

If the component relationship has a link object, the object is
returned in the third argument.

SE IslteratorEmpty() returns SE_TRUE if there are no objects to
be returned by the iterator.

SE Bool ean SE IslteratorEnmpty
(

SE Iterator iterator

)

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 37

Example 2: Example Code

void FindPolygons{ SE Transmittal xmittal, SE_Object root_obj)

{
S Return _Code ret;
SE Search Rule polygon_search ruleq] =
{
SE DRM CLASS MATCH POLYGON) /* default to Infinite depth */
}
SE Search Filter search_filter;
SE lterator iterator;
SE Object polygon_obj;

ret = SE_CreateSearchFilter(xmittal, polygon search rules, & search_filter);
ret = SE_|nitalizeComponentiterator3(root_obj, search_filter, &iterator);

while(SE_IslteratorEmpty (iterator) == SE FALSE)

{
ret = SE Get Next Qhj ect(iterator, &polygon obj, NUL ;

[* process the polygon object */

ret = SE Free(bject(pol ygon obj);
}
ret = SE_Freelterator(Iterator);
ret = SE FreeSearchFilter(search filter);

}

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals

06 January 2004

38

Example 3: Retrieving
Gridded Elevation Data

We want to retrieve elevation data
from a <Property Grid>

In the DRM, a <Property Grid> is a sub class of the
abstract class <Data Table>.
To retrieve data from a <Data Table> we need to

know:
— What is a <Data Table’s> Signature and Extents.

— What functions exist for retrieving data from a <Data Table>.
— What the format of retrieved data can be.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 39

Example 3: Retrieving
Gridded Elevation Data

Steps to retrieve gridded elevation data

Step 1. Open the Transmittal and get the Root Object.

Step 2: Get the <Property Grid>.

Step 3: Create a Store.

Step 4: Get the <Property Grid> extents.

Step 5: Get the <Property Grid> signature.

Step 6. Get the <Property Grid> data.

Step 7: Process the data.

Step 8: Free the memory associated with the extents and signature.
Step 9: Free the <Property Grid>, Store, and Root Object.

Step 10: Close the Transmittal.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 40

Example 3: Retrieving
Gridded Elevation Data

Copyright © 2004 SEDRIS™

New functions needed to
retrieve elevation data

SE GetDataTableSubExtent () (level 1)
SE GetDataTableSignature() (level 1)

SE GetDataTableData()

SE FreeDataTableSubExtent() (level 1)
SE FreeDataTableSignature() (level 1)

Fundamentals for Accessing Transmittals

06 January 2004 41

Example 3: <Data Table>
Signatures

A <Data Table> consists of Cells.
Cells consist of 1 or more elements (types of data).

The <Data Table>’s signature determines the
elements for its cells.

The signature Is the set of ordered <Table Property
Description> components under the <Data Table>
object.

EDCS codes in the <Table Property Description>
fields give the meaning of an element.

A Level 1 APl function exists as a convenience to
get a <Data Table>’s signature.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 42

Example 3: <Data Table>
Signatures

SE_Status_Code SE_Get Dat aTabl eSi gnat ure
(

SE_hj ect data_t abl e,

SE_I nt eger _Unsi gned *el ement _count _out _ptr,
SE Tabl e Property Description_Fields **prop_array_out ptr,
SE_Integer _Positive **t bl _prop_descr _ptr

Returns the number of elements for the data_table.

Allocates an array of indices for the ordered <Table Property
Description>’s that are components of data table.

Optionally creates an array of the fields for these <Table
Property Description>s.

These lists should be freed with the Level 1 function
SE FreeDataTableSignature().

void SE_FreeDat aTabl eSi gnat ure

(
SE_Tabl e_Property_Description_Fields *prop_array_ptr,

SE I nteger Positive *tbl _prop_descr _ptr

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 43

Example 3: The <Data Table> Extents

<Data Table>s may have 1 or more spatial or non-spatial
dimensions.

The dimensional extents of <Data Table> is determined by its
ordered <Axis> components.

A Level 1 APIfunction exists to get a <Data Table>’s extents.

SE_St atus_Code SE_Cet Dat aTabl eSubExt ent
{

SE_(bj ect dat a_t abl e,
SE Data Tabl e Sub Extent *extents ptr,
SE | nt eger Unsi gned *cel |l _count ptr

)

The number of cells in the <Data Table> is returned.

SE Data Table Sub Extent stores the number of <Axis>
dimensions and the starting and stopping value for each <Axis>.

The extents should be freed with the Level 1 function below:

SE_Status_Code SE_FreeDat aTabl eSubExt ent
{

)

SE Data_Tabl e Sub Extent *extents ptr

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 44

Example 3: <Data Table>
Conceptual Layout

lllustration of small data table with 4 cells
and 2 elements per cell.

The types of the elements are
EDCS Long Float and EDCS_Integer which
are given in the 2 Table Property Descriptions

There is 1 Axis of size 4.

Cell O Cell 1 Cell 2 Cell 3

elerent 1 | 45665 | 433.15 | 388.61 | 453.09
elerent 2 | 1024 | 998 110 879

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 45

Example 3: <Data Table>
Extraction Functions

SE Return_Code SE Get Dat aTabl eDat a
(

SE (hj ect data_tabl e,

const SE Data Tabl e Sub_Extent *extents ptr,
SE Integer Positive el enent _count,

const SE Integer Positive tbl _prop_descr _nunj],
SE Store store_in,

SE Data Table Data **dt _data p

Returns data as an array of SE Data Table Data structs which
is managed by the store. This data struct contains a union w ith
pointers (arrays) for each data type that a data table may hold.

The full extents of the Data Table may be retrieved by setting
extents_ptr to the value from SE_GetDataTableSubExtent. Or the
user may specify any arbitrary sub-extent of the data table.

All elements in a Data Table may be retrieved by setting
element_count and the tbl_prop_descr_num array to values set
from SE_GetDataTableSignature. Or any subset of elements
fromthe list of elements may be retrieved.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 46

Example 3: <Data Table>
Cell Data Memory Organization

lllustration of how retrieved data table cell

data is accessed.

To access 15t element 4" cell (value 453.09):
dt _data p[0].dt_array.single float_values[3];

SE Data_Tabl e Data
array (dt_data p)

oL prop_descr index = 1 / 456.65 | 433.15 | 388.61 | 453.09
value_type = SINGLE_FLOAT
dt_array.single_float_values = -
e o 1024 998 110 879
va}SIe__ptyppE 2 S|N6L2_FL01AT /
dt_array.single_float_values = -
Cell O Cell 1 Cell 2 Cell 3
element 1 1 456.65 | 433.15 | 388.61 | 453.09
e 1024 998 110 879

Copyright © 2004 SEDRIS™

Fundamentals for Accessing Transmittals

06 January 2004 47

Example 3: Example Code

void ExtractDataTableCells(SE_Object data table, SE_Store store)
{

SE Data Table Sub Extent extents,

SE Integer_Unsigned cell_count, element_count;
SE Integer_Positive *tbl_prop_descr_num;

SE Table Property Description Fields *prop_descr_flds;

SE Data Table Data *cell_data;

satus = SE_GetDataTableSubExtent(data table, &extents, &cell_count);

satus = SE_GetDataTableSgnature(data table, & element count,
prop_descr flds, tbl prop descr num);

ret = SE_GetDataTableData (data table, & extents, element_count,
tbl_prop_descr num, store, &cell data);
[* processthe cell data*/

SE FreeDataTableSubExtent(& extents);
E FreeDataTableSgnature(prop _descr flds, thl _prop_descr_num);
[* cell_dataisfreed when the Sore isfreed */

}

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals

06 January 2004

48

Advanced Component
lterator Features

SE Return_Code SE InitializeConponentlterator(

SE_(oj ect start_obj ect,

SE Sear ch_Boundary boundary,

SE Search Filter filter,

SE Bool ean directly attach_tabl e conponents,
SE_Bool ean process_i nheritance,

SE Bool ean transform| ocati ons,

SE Bool ean fol | ow_nodel i nstances,

SE_Bool ean eval uate_static_control _|inks,

const SE H erarchy_Sel ect Paraneters *sel ect _paraneters ptr,
const SE H erarchy Order_Paraneters *traversal _order_paraneters_ptr,

SE Traversal O der general traversal pattern,
SE | TR _Behavi our itr_traversal,
SE Iterator *iterator_out _ptr);

This Is the complete definition of
SE |InitializeComponentiterator().

Ten parameters we have not discussed before.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals

06 January 2004

49

Advanced Component
lterator Features

Component lterators contain extensive features to:

Filter objects
— Search Rules
— Search Boundaries
— Inter-Transmittal Referencing (ITR)
Provide control over sequence and branching of traversal
— Traversal method
— Hierarchy selection
Add objects or field data to the lterator based on DRM
iInformation
— Directly attach table components
— Process inheritance
— Transform locations
— Follow model instances
— Evaluate static <Control Links>

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 50

Advanced Component Iterator Features:
Filtering

Objects can be included or excluded based on:

— Search Rules:
» Selection determined from user defined rules based on objects’ fields or
relationships. Search Rules are used to create Search Filters.
— Search Boundary:

« Selection is based on whether the spatial location or extent of an object.
falls within a user defined search bounds.

» The search bounds is given by the C API data struct SE_Search_Bounds.

 The search boundary information is given w ith the creation of opaque C
APl type SE Search_Boundary using SE_CreateSpatialSearchBoundary()

— Inter-Transmittal Referencing (ITR):

 An ITRreference is a component or associate relationship from an object
in one Transmittal to an object in another. The DRM is not ITR aware. All
normal rules for relationships apply.

 lterators may be configured include objects in others transmittals or to
ignore them. If including, the iterator can either resolve (access) the ITR
object or it may simply return an ‘unresolved’ SE_Object. The Status Code
set by SE_GetNextObject() will give an indication w hen an ITR object is
returned an w hether it was resolved.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 51

Advanced Component Iterator Features:
Sequencing and Branching Control

Objects can be ordered according to a Depth-first or a
Breadth-first Traversal.

Hierarchy order parameters can be set to affect the
order in which components of hierarchy objects are
returned.

Hierarchy selection parameters can be set to choose
the set of components that are returned.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 52

Advanced Component Iterator Features:
DRM Related Features

Directly attach table components:

— Indexed components are replaced with directly attached
Instances.

— Examples: <Attribute Set Index> objects, <Color Index>, ...

Inherited components:

— The DRM specifies rules to allow objects to inherit components of
objects found higher in the aggregation tree. Inherited

components are semantically the same as directly attached
components.

— Component terators can be configured to return inherited
components as real objects.

Follow model instances:

— When enabled, this feature causes an lterator to return the
<Model> associated with a model instance as the model
Instance’s component.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 53

Advanced Component Iterator Features:
DRM Related Features

Transform locations:
— For <Models>, coordinates are transformed from the
<Model's> SRF to the World SRF.
Evaluate static <Control Link>:

— <Control Link> objects in the DRM provide a mechanism
for specifying how field values of objects can be modified.

— Used to implement instance-specific values for object
fields.

— The component lterator can process static <Control Link>
expressions and return fields containing the modified
values.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 54

Miscellaneous Extraction
Features and functions

Object ID Strings

— SE_GetObjectFromIDString(), SE_GetObjectIDString().

— Every object in a transmittal has an ID String unique to the transmittal so
that they may be extracted directly w ithout having to traverse from the
root object.

Associate and aggregate lterators

— SE_InitializeAssociatelterator(), SE_InitializeAggregatelterator()

— Similar to component Iterators, but with only search filters and ITR as
options and limited to a ‘depth’ of 1.

Extracting a hierarchy of objects
— SE_GetPackedHierarchy()
— Extracts an entire hierarchy of the transmittal at one time.

Extracting <lmage> data
— SE GetRearrangedimageData(), SE GetlmageData()

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 55

Miscellaneous Extraction
Features and Functions

Copyright © 2004 SEDRIS™

Extracting <Image> data:

The API has a specialized function to extract <Image> data.

Organization and word order of returned data is determined by
the <lImage> object’s field values.

Only one mip level can be extracted at a time.

The start and stop texel parameters must correspond to the
start and stop texels for the Image.
Stores are used to manage the memory for the <lmage> data.

Level 1 functions exist to convert <iImages> between differing
representations (color model, scan direction, pixel depth, etc.).
SE Return_Code SE Getl nageDat a(

SE (hj ect | mage,

SE | nt eger _Unsi gned start _texel horizontal,
SE | nt eger _Unsi gned start _texel vertical,
SE | nt eger _Unsi gned start _texel z,

SE | nt eger _Unsi gned stop_texel horizontal,
SE | nt eger _Unsi gned stop_texel vertical,
SE | nt eger _Unsi gned stop_texel z,

SE Short I nteger _Unsigned m p_| evel,

SE Store store_in,

unsi gned char **data_out _ptr);

Fundamentals for Accessing Transmittals 06 January 2004

56

The Insertion Component
of the SEDRIS C API

Topics

Insertion Capabillities

Example 4: Build a geometry representation of the
Lake Eola transmittal.

Example 5: Build a feature representation of the
Lake Eola transmittal with elevation data.

Example 6: Edit the feature representation by
editing the <Description> fields, removing some
objects and adding other objects.

Example 7. Combine the feature representation
and geometry representations of Lake Eola by
using ITR.

Miscellaneous Insertion Topics

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 58

Insertion Capabilities

Creating Transmittals by adding objects and
relationships.

Adding cell data to <Data Tables>.

Adding objects and relationships, to existing
Transmittals.

Editing the fields of objects in existing Transmittals.

Removing objects and relationships from existing
Transmittals.

Publishing objects for use in ITR references.
Make ITR references from one Transmittal to another.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 59

Example 4. Geometry
Representation

We want to create a geometry
representation of Lake Eola

To do this we need to know:

— How to open a Transmittal for creation.

— How to create SEDRIS objects.

— How to set the fields of an object.

— How to create relationships between objects.
— How to set the Root Object in the Transmittal.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 60

Example 4. Geometry
Representation

Steps to Create a Transmittal

Step 1: Open the Transmittal.

Step 2: Create a <Transmittal Root> and set its fields.
Step 3: Add the <Transmittal Root> to the transmittal.
Step 4: Set the <Transmittal Root> as the root object.
Step 5: Create a new object.

Step 6: Set field data for new object - Optional.

Step 7: Create a component relationship betw een the new
object and its parent.

Step 8: Free the new object.

Step 9: Repeat Steps 5 - 8 until done.
Step 10: Free the Root Object.

Step 11: Close the Transmittal.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 61

Example 4. Geometry
Representation

Functions needed to create Lake Eola

Copyright © 2004 SEDRIS™

Transmittal using geometry

SE OpenTranmittalByFile()

SE CreateObject()

SE SetFieldsToDefaults()

SE PutFields()
SE_AddComponentRelationship()
SE SetRootObject()

SE FreeObiject()

SE CloseTransmittal()

Fundamentals for Accessing Transmittals

06 January 2004 62

5,19 Example 4: Creating a New Transmittal

ey j
l' o N r "
gl A

SE Return_Code SE penTransmttal ByFile

(
const char file location[],
const char I mpl eentation_identifier[],
SE Access Mode access_node,
SE Transmtt al *transmttal out ptr
);

With access_mode of SE. AC_ _MODE_ CREATE, an
SE Transmittal is created and passed back in
transmittal _out_ptr.

Implementation_identifier is the implementation of the
API; usually “stf”.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 63

Example 4: Creating New Objects

SE Return_Code SE O eate(j ect
(

SE Transmttal transmttal,
SE DRM d ass drmcl ass,
SE (bj ect *new obj ect _out ptr

),

Creates a SE_Object in memory.

The “drm_class” parameter specifies the object’s
DRM class.

Transmittal is the Transmittal to which this object
will belong.

The created object is allocated by the APl and
must be freed by calling SE FreeObiject().

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 64

Example 4: Setting Field Values

SE Return_Code SE Put Fi el ds

SE (bj ect obj ect,
SE FI ELDS PTR new fi el ds

),

Sets field values of an SE_Object.

The drm_class member of the fields structure
must match the class of the object.

The object Iis created with fields that are
Initialized to the default for its class. If the
defaults are desired, then SE_PutFields() is not
necessary.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 65

Example 4: Creating Object Relationships

SE Return_Code SE AddConponent Rel ati onshi p

(
SE (hj ect aggregat e obj ect,
SE (hj ect conponent obj ect,
SE (bj ect |ink _object

);

Establishes the relationship between an
aggregate and its component.

If the DRM specifies a 2-way relationship, then
the component to aggregate relationship is made
too.

Supports specification of link objects (use NULL
If no link object is required).

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 66

Example 4: The Root Object

SE Return_Code SE Set Root (bj ect
(

SE Transmttal transmttal,

SE (bject new root object,

SE (bj ect *ol d root object
)i

This sets the object that will be returned froma
call to SE_GetRootObject().

The Root Object must be a Transmittal Root
Object.

If the root object was set previously, then the old
root object is returned in old_root_object.

NULL may be passed in for old_root_object.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 67

Example 4: Example Code

main()

{

SE Return _Code ret;

SE Transmittal xmittal;

SE Object root_obj, description obj;
SE Fields root_flds, description flds;

ret = SE OpenTransmittalFile(“ Lake Eola.stf, “ stf”,
SE AC_MODE_CREATE, &xmittal);

ret = SE_CreateObject(xmittal, SE DRM_CLS TRANSMITTAL _ROOT,
&root_obj);
ret = SE_SetRootObject(xmittal, root_obj, NULL);

ret = SE_CreateObject(xmittal, SE DRM_CLS DESCRIPTION,

& description_obj);
ret = SE_SetFieldsToDefault(SE DRM_CLS DESCRIPTION, & description_flds);

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004

68

; J Example 4: Example Code (continued)

Ay s
s

strepy(description_flds.u.Description.abstract.characters,
“ Lake Eola, Geometry”);

description_flds.u.Description.abstract.length =

strlen(“ Lake Eol a, CGeornetry ");
ret = SE_PutFields(description_obj, & description_flds);
ret = SE_ AddComponentRelationship(root_obj, description_obj, NULL);

[* create the Geometry Objects under the Environment Root. */
create_environment_root_objects(xmittal, root_obj);

ret = SE_FreeObject(root_obj);
ret = SE_FreeObject(description_obj);

ret = SE_CloseTransmittal(xmittal);
}

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals

06 January 2004 69

Example 5: Feature Representation
and Elevation

We want to create a feature representation of Lake
Eola complete with elevation data

A feature representation simply uses different DRM objects,
such as Point_Feature and Areal Feature to represent
trees, lakes, fountains, footpaths etc.

In this Transmittal, elevation data is stored in a <Property
Grid>, which is a <Data Table>.

To do this we need to know:
— What we previously learned about insertion.
— How to create and add cells to a <Data Table>.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 70

Example 5: Feature Representation
and Elevation

Steps to create our feature
representation of Lake Eola

Step 1. Open the Transmittal and create the Root Object.

Step 2: Use the same functions introduced in the geometry
example to create the feature objects.

Step 3: Create the <Property Grid> object and all its <AXxis>
and <Table Property Description> objects.

Step 4: Add the elevation data to the <Property Grid>.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 71

Example 5: Feature Representation
and Elevation [3 of 3]

New functions needed to create our
feature representation of Lake Eola

SE AllocDataTableData()
SE PutDataTableData()
SE GetCellCountForSubExtent()

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals

06 January 2004 72

Example 5: Inserting data
Into the <Data Table>

Data is organized the same as for SE_GetDataTableData();
as an array of SE Data Table Data structures w hich each
point to an array of data for the element.

As a convenience for allocating these arrays, the function
SE AllocDataTableData is provided.

The dt_data_ptr is set with the memory managed by the
Store passed in.

(SE_Ret urn_Code SE All ocDat aTabl e

SE (bj ect dat a_t abl e,
SE Data Tabl e Sub Extent *sub_extent,
SE | nt eger _Unsi gned el ement _count,
const SE Integer Positive tbl _prop_descr _nuni],
SE Store *store,

const SE Data Tabl e Data **dt _data ptr
);

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 73

Example 5: Inserting data
Into the <Data Table>

All the Axis and Table Property Description objects must
be created as components of the data table before the cell
data is added.

Once the array’s of data in SE Data Table Data have
been set with the element data to be put into the data table,
the function SE PutDataTableData is called.

?E_REturn_dee SE Put Dat aTabl eDat a

SE_(hj ect data_t abl e,
SE Data Tabl e Sub_Extent *sub_extent,
SE | nt eger _Unsi gned el ement _count,
const SE Integer Positive t bl _prop_descr_nuni],

const SE Data Table Data *dt _data_in _ptr
);

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 74

Example 5: Code to insert data into
the <Data Table>

void AddDataTableCells(SE_Object data_table obj,
SE Data Table Sub Extent *sub_extents,
SE Sore store,
EDCS Long Foat *elev_data
{
S Return_Code ret;
SE Integer_Unsigned elev_tpd indx=1; // data table hasonly 1 element for elevation
S Data Table Data*dt_data;

ret = SE_AllocDataTableData(data table obj, sub_extents,
1, // 1 element to allocate
&elev_tpd_indx, // element is 1t Table Prop Description
dore, &dt_data);
int cell_cnt = SE_GetCellCountForSubExtent(sub_extents);

for(inti=0;i < cell_cnt; i++)

{
dt_data]0].value type =SE DTD VT _SNGLE_FLOAT;
gridData[0].u.sngle_float_valueqi] = elev_datd[i];

}

ret = SE_PutDataTableData(data table obj, sub_extents,
1, &€elev_tpd _indx, dt_data);
/I dt_datais freed when the store is freed or reused.

Copyright © 2004 éEDRISTM Fundamentals for Accessing Transmittals 06 January 2004 75

Example 6: Editing Transmittals

We want to edit our feature Transmittal. We
want to change the <Description>, and
Replace a Tree with a Building.

Our building will be a <Feature Model Instance>
(FMI) of a <Feature Model> that is already in our
<Model Library>.

To do this we need to know:
— How to open a Transmittal for update.
— How to change the fields of an existing object.
— How to delete relationships.
— How to remove objects froma Transmittal.
— How to add new objects to an existing Transmittal.
— How to create associate relationships.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 76

Example 6: Editing Transmittals [2 of 3]

Steps to editing our feature Transmittal

Step 1: Open the Transmittal in update mode.
Step 2: Get the <Description> object.
Step 3: Put the new fields in the same manner as example 1.

Step 4: Get the <Point Feature> representing the tree we are
chopping dow n.

Step 5: Remove the component relationship between the
<Point Feature> and its parent.

Step 6: Remove the <Point Feature>.

Step 7: Create a <FMI> object to represent the building we
are putting up.

Step 8: Add the <FMI> to the Transmittal.

Step 9: Create an association relationship from the <FMI> to
the <Feature Model>.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 77

Example 6: Editing Transmittals [3 of 3]

Functions needed to edit our
feature Transmittal

SE OpenTransmittalByFile()

SE PutFields()

SE RemoveFromTransmittal()

SE RemoveComponentRelationship()
SE RemoveObijectTree()

SE CreateObiject()

SE AddAssociateRelationship()

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 78

Example 6: Editing Object Fields

Pass SE_ AC_MODE _UPDATE as the access
mode to SE_OpenTransmittalByFile().

Using functions from the Extraction AP, obtain
the SE_Object for the <Description>.

Set new field values in a SE Fields type, and
call SE_PutFields just the same as in create
mode.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 79

Example 6: Removing Relationships

SE Return_Code SE RenoveConponent Rel ati onship

(
SE _(bj ect aggr egat e_obj ect,
SE (bj ect conponent _obj ect,
SE (bj ect | i nk_obj ect

Obtain the aggregate and component SE_Objects with the
relationship to break.

Call SE_RemoveComponentRelationship().
— Note: SE_RemoveAssociateRelationship() exists for
removing associate relationships.

This does NOT remove objects from the Transmittal. if this
IS the only relationship to the component object and it is
not removed from the transmittal, then the object will

become an orphaned object that exists in the transmittal
with no way to access it.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 80

Example 6: Removing Objects

SE Return_Code SE RenoveFromiransmtt al

(
SE (hj ect ol d_obj ect,
SE Transmttal transmttal

Obtain the SE_Object to remove.
Call SE_RemoveFromTransmittal().

This does NOT remove existing relationships to the object.
— Be careful not to leave dangling objects or references.

— If we want to remove the whole sub-tree below the object, then instead call
the level 1 function SE_RemoveObjectTree().

SE Status_Code SE Renove(bjectTree(SE (bject start _object);

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 81

Example 6: Adding New Objects

Pass SE_ AC_MODE_UPDATE as the access
mode to SE _OpenTransmittalByFile().

Using functions from the Extraction AP, obtain
the SE _Object that will be the parent of the new
<FMI> object.

Call SE_CreateObject() to the create the FMI
just the same as in Create mode.

Set field values of the <FMI>, and call
SE PutFields just the same as in Create mode.

Call SE_AddComponentRelationship() from the
<FMI's> parent to the <FMI>.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 82

Example 6: Adding Associate Relationships

SE Return_Code SE AddAssoci at eRel ati onshi p
(

SE (bj ect from obj ect,
SE (oj ect to_obj ect,
SE (bj ect | i nk_obj ect,
SE Bool ean nake two_ way
)i
Obtain <Feature Model> of the building in the

model library.
Call SE_AddAssociateRelationship().

Pass NULL for the link object, since there is no
link object for a <FMI> => <Feature Model>
associate relationship.

Pass SE FALSE for make two way, since this
will only be a one-way associate relationship.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 83

Example 6: Example Code

void ChopDownTree(SE_Transmittal xmittal, SE_Object tree_parent_obj,
SE Object tree obj, SE_Object bldg model_obj)

{
SE Return_Code ret;

SE Object bldg_fmi_obj;
ret = SE_ RemoveComponentRelationship(tree_parent_obj, tree_obj, NULL);
ret = SE_RemoveFromTransmittal(tree_obj, xmittal);
/' We could replace the previous 2 lines of code with 1 call to SE_ RemoveObjectTree(tree_obj);
! ret = SE_CreateObject(xmittal, SE_DRM_CLS FEATURE_MODEL _INSTANCE,
&bldg fmi_obyj);
ret = SE_ AddComponentRelationship(tree_parent_obj, bldg_fmi_obj, NULL);

ret = SE_ AddAssociateRelationship(bldg fmi_obj, bldg model_obj, NULL, SE FALSE);
}

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004

84

Example 7: Using ITR

We want the geometry representation
to include the elevation data from the
feature representation

There are 2 ways of creating an [TR reference.
— The referenced object is accessible.
— The referenced object is NOT accessible.

We will need to know how to give a transmittal a URN name
and how to publish objects in the transmittal.

if the reference transmittal is not accessible, then we wll
need to know:

— How to create an unresolved object used to create a
component relationship.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 85

Example 7: Creating an ITR Reference

Steps to create an ITR reference if the
referenced object is accessible

Stepl : Open the geometry representation Transmittal for
update.

Step 2: Open the feature representation Transmittal for update.
Step 3: Give the feature Transmittal a URN Name.

Step 4: Create and add a <Property Grid Hook Point> (PGHP) to
the geometry representation.

Step 5: Use an lterator to find the <Property Grid> (PG) in the
feature representation.

Step 6: Publish the PG object.
Step 7: Call SE_ AddComponentRelationship() with the

<PGHP> and the <PG> objects to make the relationship

just as if the objects were In the same Transmittal. We
don’t need to specify ITR; it is automatic.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 86

;i) Example 5: Creating an ITR Reference

New functions needed to make our
<Property Grid> available to other
transmittals

SE SetTransmittalName()
SE PublishObject()
SE GetUnresolvedObjectFromPublishedLabel()

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 87

Example 7: Publishing Objects

SE Return_Code SE SetTransmttal Nane
(

SE Transmtt al transmttal,
const char * transmttal nane

);
In order for one Transmittal to be referenced from another, it must
have a URN name..

SE SetTransmittalName() gives an open Transmittal a valid URN
name.
— Example URN: urn:x-sedris:saic:LakeEola.stf:1.

In order to reference an object from a different Transmittal, an object
must be published with a label.
— The function SE_PublishObject() does this.

SE Return_Code SE PublishCbj ect

(
SE (bj ect obj ect _i n,
const char *|l abel _in

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 88

511y Example 7: Creating an ITR Reference

Steps to create an ITR reference if the
referenced object is NOT accessible.

Step 1: Open the geometry representation Transmittal for
update.

Step 2: Create and add a <PGHP> to the geometry representation.

Step 3: Call SE_GetUnresolvedObjectFromPublishedLabel() to create an
unresolved SE_Object with the <PG’s> object label and the feature
representation Transmittal's URN name.

Step 4: Call SE_AddComponentRelationship() with the <PGHP>
and the <PG> SE Objects.

Note: The feature representation at some point must still be assigned the
URN and have the PG published with the same label.

SE Return_Code SE Get Unresol ved(hj ect Fr onPubl i shedLabel
(

const char *transmttal nane,
const char *0obj ect | abel,
const char | npl enentation_identifier[],

SE (bj ect *object _out ptr
)i

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 89

Miscellaneous Insertion Topics:
Inserting Image Data

SE _Ret urn_Code SE_Put | mageDat a

(
SE_bj ect i mage,
SE | nt eger _Unsi gned start _texel horizontal,
SE_I nteger _Unsi gned start_texel _vertical,
SE | nt eger _Unsi gned start_texel z,
SE_I nt eger _Unsi gned stop_t exel _horizont al
SE_ I nt eger _Unsi gned stop_texel vertical
SE I nt eger _Unsi gned stop_texel z,
SE_Short _Integer_Unsigned mp_|evel,
SE_ | nt eger _Unsi gned byt e count,

const unsi gned char *data_in_ptr
);

The <Image> object must have first been
created and committed to the transmittal.

Memory for data_in_ptr is managed by the user
application.

Word order of the <lmage> data is determined
by the image object’s field values.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 90

Introduction to the SEDRIS
C++ API

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 91

Topics

C++ API History
C++ API Goals
C++ API Overview
C++ API Benefits
C++ APIClasses

Code comparisons with C API
— Data extraction example
— Data insertion example

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 92

C++ API History

A C++ prototype was shown at STC 2002 in Vancouver.

— Prototype generated a lot of interest.

— In parallel, existing programs using SEDRIS requested an object-
oriented AP

Requirements gathering and planning started in late 2002
and continued through 2003.

A working prototype based on the current SEDRIS 3.1.2
SDK was used to finish fleshing out the C++ APl and used
for internal testing in order make sure we got it right.

Completed C++ APl will be released as part of the SEDRIS
4.0 SDK package.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 93

C++ API Goals

To meet current and future customer demand for object-
oriented (OO) implementations.

To expose the object-oriented aspects of the DRM at the
interface level. For example, using C++ class hierarchies
for DRM objects.

To balance the use of OO facilities vs. providing consistency
with the current interfaces and capabilities.

To minimize the economic impact (maintainability,
development) of multiple baseline implementations.

To provide a portable interface/implementation to other
languages (e.g. Java) and access through COM interfaces

To ease the learning curve for new users and users of OO
languages.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 94

C++ API Goals (cont’d)

To at least maintain the level of robustness and
performance of the current implementation.

To provide for an efficient and direct access to field data by
using DRM class-specific accessor methods.

To provide an automated and more efficient memory
management system.

To provide a more consistent error handling and logging
mechanism.

To allow for reduced user code complexity by exploiting
features of the implementation language.

To provide extensibility where appropriate, such as
specialized iterators and search filters.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 95

C++ API Overview

Similarly to the C API, the OOI C++ APl is a set of header
files and shared/static libraries for all supported platforms.

All C++ classes are accessed through the “sedris”
namespace to avoid name collisions with other libraries.

All C++ API functions are documented in the header files,
and also contain sample code that demonstrate their use.
— HTML documentation is generated fromthe header files for easier
browsing using the doxygen tool.
Reads and writes the same SEDRIS Transmittal Format
that the C APl does.

— All STF transmittals can be accessed with either API, provided they
were created with the same SDK version (ie, the 4.0 C++ APl will not
read version 3.1.2 transmittals.)

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 96

C++ API Benefits

Allows user access to an object-oriented programming
Interface.

Memory management is taken care of by the C++ API.
— No worrying about SE_Stores.

Simplified methods for accessing fields, rather than C
structure based access.

Error handling advantages

— Can always trap APl exceptions without a lot of code.
— Exception mechanism handles clean up on errors:
» Qutstanding object references
» Closing transmittals
Possible to extend API class functionality:
— Class inheritance
— Operator overloading

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 97

#

T e N

]

ANk C++ API Classes

\

-

seWr kspace

— Groups access to transmittals in a common setup.
seTransmtt al

— Access to transmittal data, creates DRM objects.
se(bj ect

— Manipulates DRM object instances. The DRM hierarchy of classes is
derived from seDRMBase, w hich is in turn derived from se(hj ect .

selterator
— Sequential access to DRM objects.
seExcepti on

— Exception handler class throw n from all API functions when an error
occurs.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 98

seWorkspace (1 of 2)

Used to manage transmittals under a common “theme”.
— Opens transmittals
» seWorkspace:.openTransmittalByFile
» seWorkspace::.createTransmittal
o seWorkspace::editTransmittal
» seWorkspace::openTransmittalBy URN
— Specify APl memory model
» seWorkspace::setMemoryModel
— Manages transmittals
» seWorkspace::getOpenedTransmittalCount
» seWorkspace:.getOpenedTransmittal

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 99

seWorkspace (2 of 2)

Specifies ITR behaviour for all transmittals in workspace

— seWorkspace::setlTRResolverPath

» This fulfills the same purpose as the SEDRIS RESOLVER PATH
environment variable in the C API.

— seWorkspace::setlTRBehaviour
« Same as the C API.

— seWorkspace::setAccessModelnheritance

e Sets if transmittals reached via an ITR link should have the same access
mode as the transmittal originally opened by the user.

Creates unresolved objects to use to reference other
transmittals via ITR

— seWorkspace::createUnresolvedObject

» Creates a special seObject that represents an ITR reference into
another transmittal without having the other transmittal present.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 100

seTransmittal (1 of 2)

Used to manipulate SEDRIS transmittals, and to
create/access the DRM objects in the transmittal
hierarchy
Accesses and sets the transmittal’s root object
— seTransmittal::setRootObject

— seTransmittal::getRootObject

Creates and deletes DRM objects

— seTransmittal::createObject

— seTransmittal::removeObject

Accesses objects via object ID
— seTransmittal::getObjectFromiD

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 101

s seTransmittal (2 of 2)

N >

Manages various ITR information at the transmittal
level.

— Accesses all published objects in the transmittal.
» seTransmittal::getPublishedObject
» seTransmittal::getPublishedObjectslterator

— Manages the transmittal's URN
e seTransmittal::getURN
e seTransmittal::setURN

— Accesses all TR reference (to other transmittals) information
 seTransmittal::getITRReferenceCount
 seTransmittal::getiITRReference
 seTransmittal::getITRReferencelLabelCount
« seTransmittal::getITRReferencelLabel

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 102

seObject (1 of 3)

Encapsulates access to all fields and data contained in
DRM transmittal objects, including relationships to other
DRM trans mittal objects.

DRM type and field information
— seObject::getDRMClass

— seObject:.getFields

— seObject::setFields

DRM relationship information

— Components
» seObject::hasComponents
» seObject::getComponent
» seObiject:.getComponentlterator
» seObject::addComponent
» seObject::removeComponent

— Same 5 calls for Associates and Aggregates

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 103

seObject (2 of 3)

Provides various utility methods for each object.
Access to Object IDs

— seQObject::getiD

User data mechanism

— seObject::setUserData
— seObject::getUserData

Other utility methods
— seObject::isSameAs
— seObject::getTransmittal

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 104

\

3

-
b
i, i

i
.

) seObject (3 of 3)

Provides ITR related methods:

seObject::isPublished

» Checkto see if an object is published so it can be referenced from other transmittals.
seObiject::publish

» Publish the object so it can be referenced from other transmittals.
seObiject::unpublish

 Remove the object from the list of objects that can be referenced from other transmittals.
seObject:.getPublishedLabelCount

* Returns how many different labels the object is published as.
seObject::getPublishedLabel

» Gets each specific label the object was published as.
seObject::isResolved

» Determine if an object is resolved or not.

seObject::resolve

« If an object was retrieved via [TR, and the ITR behavior is not set to
SE ITR_BHVR_RESOLVE, then this function will resolve the object.

seObject::getUnresolvedTrans mittalURN

» Gets the transmittal URN that the unresolved object references.
seObject::getUnresolvedObjectLabel

» Gets the object label that the unresolved object references.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004

105

seDRMBase Hierarchy (1 of 3)

se(hj ect

T

seDR\MVBase
JA

seDRVAccess seDRM . . seDRMNr | d3x3

seDRMLocat i on3D seDRM . . seDRM . .

T

seDRM ..

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 106

seDRMBase Hierarchy (2 of 3)

All seDRMBase derived objects inherit from the seObject
class.

— All seDRMBase objects share all seObject methods.
Each DRM class has it's own C++ APl class under the
seDRMBase hierarchy

— seDRMTransmittalRoot
— seDRMModelLibrary

— seDRMEnvironmentRoot
— eftc.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 107

seDRMBase Hierarchy (3 of 3)

Each seDRMBase derived class has direct access to

iIndividual field elements defined by the DRM class.
— For example, the seDRMTransmittalRoot has the following field

methods:
* get name() / set_name()
e get_major_DRM version() / set_major DRM version()
» get_minor_DRM version() / set_minor_DRM version()
» get _interim_DRM version() / set_interim_DRM version()
o etc...

— Can still access the SE Fields structure via the inherited seObject

method:

» seObiject::getFields / setObject::setFields

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 108

selterator

Generalized iterator for seObjects.

— Used to iterate through component objects, associate objects, and
aggregate objects.

Much simpler than the C APl iterator concepts:
— Only one level deep
— Can only filter by DRM class type
— ITR behaviour is set at the workspace level
Created by the seObject and one special case:
— seObject::getComponentlterator
— seTransmittal::getPublishedObjectslterator

Functions
— selterator::.isCompleted
— selterator::getCount

— selterator::getNext
* With or without a link object parameter

— selterator::getNthNext
* With or without a link object parameter

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 109

\

1)

AP seException

-

The general exception class thrown from failed methods.

Exception contains two pieces of information:

— Error code (FILE_ERROR, TRANSMITTAL_UNACCESSIBLE, etc)
» seException::getCode

— Description string (freeform)
» seException::getWhat

Must be caught at the application/library level code, otherwise
application will exit.

— Gives ability to clean up after the APl encounters an error.
try

seWorkspace Wksp;
seTransmittal xmtl;
wksp::openTransmittalByFile(“bad path.stf”, xmitl)
}
catch(seException & e)
{
cout << “Exception was thrown: * << e.getWhat <<*(code: “ << e.getCode() << “)” << endl;
Il clean up application memory and continue

}

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals

06 January 2004 110

Code Comparison: Example 1

Read the <Description> from the
sample Lake Eola Transmittal

The description Is stored in the fields of a

SE DRM CLS DESCRIPTION object which the DRM
requires to be a component of the <Transmittal Root>
object.

To do this we need to know:
— How to open and close a Transmittal for reading.

— How the C++ APl handles exceptions, status codes, and error
descriptions.

— How to access objects by traversing relationships.
— How to access fields of an object.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 111

Example 1: C APl Code

mar(s

SE Return_Code ret;

SE Transmittal xmittal;

SE Object root_obj, desc obyj;
SE Sore sore;

SE FIELDS PTR desc flds;

ret = SE_ OpenTranamittalByFile(“ Lake Eolasf”, “ &f”,
SE AC MODE_READ_ONLY, &xmittal);
ret = SE_GetRootObject(xmittal, &root_obj);
ret = SE_GetComponent3(root_obj, SE DRM_CLS DESCRIPTION, &desc_obj);
ret = SE CreateSore(“ &f” , & sore);
ret = SE_GetFields(desc_obj, store, & desc flds);
printf(“ Transmittal Description %s\n” , desc_flds->u.Description.abstract.characters);
ret = SE_FreeStore(Store);
ret = SE_FreeObject(root_obyj);
ret = SE FreeObject(desc_obyj);

ret = SE_CloseTransmittal(xmittal);
}

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 112

Example 1. C++ API Code

main()

{
seWorkspace workspace;
seTransmittal xmittal;

seDRM TransmittalRoot root_obj;
seDRMDescription desc_obj;

try
{
workspace.openTranamittalByFile(“ Lake Eolastf” , xmittal);

xmittal.getRootObject(root_obj);

if(root_obj.getComponent(desc_obj))

{ cout << “ Transmittal Description “ << desc_obj.get_description().characters << endl;
}
xmittal.close();

(}:atch(seException & €)

i cout << “ An error occurred: “ << e.getWhat() << endl;

}

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 113

Example 1: Summary

No longer need to worry about memory management.

— Constructors and destructors handle it for you.
 No more SE FreeObject calls.

Didn’t have to check the status code of every function. One
try...catch block handles everything.

Didn’t have to remember “SE_ AC_ MODE_READ_ ONLY”
everytime you want to open a transmittal.

Didn’'t have to specify SE DRM CLS DESCRIPTION
because a seDRMDescription object reference was passed
Into root_obj.getComponent.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 114

Code Comparison: Example 2

Retrieve all of the <Polygons> in the sample
Lake Eola Transmittal

We do this by recursively retrieving components
from the <Transmittal Root> on down.

This example will introduce:
— selterators

— How to create and use selterators recursively with help
from the DRM.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 115

Example 2: C APl Code to retrieve

<Polygons>

void FindPolygons{ SE Transmittal xmittal, SE_Object root_obj)
{
S Return _Code ret;
SE Search Rule polygon_search ruleq] =
{

SE DRM CLASS NVATCH POLYGON) /* Infinite depth */
}
SE Search Filter search_filter;
SE lterator iterator;
SE Object polygon_obj;

ret = SE_CreateSearchFilter(xmittal, polygon search rules, & search_filter);
ret = SE_|nitalizeComponentiterator3(root_obj, search_filter, &iterator);

while(SE_IslteratorEmpty (iterator) == SE FALSE)

{
ret = SE Get Next Qhj ect(iterator, &polygon obj, NUL ;

[* process the polygon object */

ret = SE Free(bject(pol ygon obj);

}
ret = SE_Freelterator(Iterator);

ret = SE FreeSearchFilter(search filter);
}

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 116

Example 2. C++ APl Code to Retrieve Polygons

void FindPolygons(seObject current_obj){
selterator iterator;
seObject child_obj;
SE DRM_Classdrm_type;
current_obj.getComponentlterator(iterator);

while(!iterator.isCompleted()){

iterator.getNext(child_obyj);
drm_type = child_obj.getDRMClasy();

if(drm_type == SE DRM_CLS POLYGON){
[* process the polygon object */

}
elsg(
[* prune search pathsthat won't result in finding <Polygons> */
if(SE_ShortestAggPath[drm_type][SE DRM_CLS POLYGON] !'=-1)
{
FindPolygons(child obj); /* recurse down the transmittal tree */
}
}

}
}

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals

06 January 2004 117

Example 2: Summary

No search rules or search filters.

Had to use recursion to produce same functionality as the C
API search filter mechanism.

Also had to use SE ShortestAggPath to limit wasteful

recursion.
— CAPluses SE _ShortestAggPath under the covers.

— Had to use getDRMClass to use in SE_ShortestAggPath.

Could utilize or extend the C++ selterator class to create a
new iterator class that goes many levels deep and/or
provides more filtering mechanisms.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 118

Code Comparison: Example 3

We want to create a geometry
representation of Lake Eola

To do this we need to know:

— How to open a Transmittal for creation.

— How to create SEDRIS objects.

— How to set the fields of an object.

— How to create relationships between objects.
— How to set the Root Object in the Transmittal.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 119

Example 3: C APl Code

main()

{

SE Return _Code ret;

SE Transmittal xmittal;

SE Object root_obj, description obj;
SE Fields root_flds, description flds;

ret = SE OpenTransmittalFile(“ Lake Eola.stf, “ stf”,
SE AC_MODE_CREATE, &xmittal);

ret = SE_CreateObject(xmittal, SE DRM_CLS TRANSMITTAL _ROOT,
&root_obj);
ret = SE_SetRootObject(xmittal, root_obj, NULL);

ret = SE_CreateObject(xmittal, SE DRM_CLS DESCRIPTION,

& description_obj);
ret = SE_SetFieldsToDefault(SE DRM_CLS DESCRIPTION, & description_flds);

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 120

Example 3: C APl Code [2 of 2]

strepy(description_flds.u.Description.abstract.characters,
“ Lake Eola, Geometry”);

description_flds.u.Description.abstract.length =

strlen(“ Lake Eol a, CGeornetry ");
ret = SE_PutFields(description_obj, & description_flds);
ret = SE_ AddComponentRelationship(root_obj, description_obj, NULL);

[* create the Geometry Objects under the Environment Root. */
create_environment_root_objects(xmittal, root_obj);

ret = SE_FreeObject(root_obj);
ret = SE_FreeObject(description_obj);

ret = SE_CloseTransmittal(xmittal);
}

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 121

Example 3. C++ APl Code to create objects

seWbr kspace wksp

seTransmttal xmttal
seDRMIransm ttal Root root_obj;
seDRMDescri ption description_obj;

wksp.createTransmttal (“Lake Eola.stf”, xmttal);
xmttal.createCbject(root_obj);

xmttal.set Root Qhject(root_obj):

xmttal.create(bject(description_obj);
description_obj.setFi el ds(SE DESCRI PTI ON_FI ELDS DEFAULT);
description_obj.set abstract(“Lake Eola, Ceonetry”);
root _obj . addConponent (descri ption_obj);

/* create geonetry objects under <Environment Root> */

create_environnent _root objects(xmttal, root_obj);
}
catch(seException & e)
{

cout << “An error occurred: “ << e.getWuat() << endl;
}

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 122

Example 3: Summary

Simple createTransmittal call replaces
SE OpenTransmittalByFile call with
“SE_AC_MODE_CREATE".

Instead of manipulating the SE Fields object and then call
SE PutFields, we manipulate the fields via direct methods
on the seDRMDescription object.

SE_AddComponentRelationship is replaced with
addComponent
— Link object is now optional, no NULL parameter required.

Transmittal is closed when the workspace drops out of
scope.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 123

C++ Summary

We've covered the basics of the C++ API

— C++ APlis very different than the C AP, but DRM classes and
structures are the same for both, so code will be structured very
similarly.

— C++ APl handles a lot of memory management issues that you
have to worry about with the C API

— C++ APl has uses exception handling rather than return codes for
error conditions.

C++ APl will be released with the upcoming SEDRIS 4.0
SDK release.

Where to go from here:

— Advanced Use of the SEDRIS SDK tutorial will be using the C++
API.

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 124

Summary

We have:
— Highlighted API capabilities.

— Demonstrated API functionality through small applications and
routines.

— Introduced and explained how to use API functions and data
types.

— Ildentified common mistakes in the use of the APl
Y ou should:
— Understand the capabilities of the SEDRIS API.
— Recognize the key functions and data structures.
— Know where to go for more information:
e Www.sedris.org
* help@sedris.org
 How To Produce and Consume Transmittals tutorial

Copyright © 2004 SEDRIS™ Fundamentals for Accessing Transmittals 06 January 2004 125

