
Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 1/9/2004 1

How To Produce & Consume Transmittals

 http://www.sedris.org

SEDRIS™ Technology Conference
Lake Buena Vista, FL

9 January 2004

Jesse Campos
SAIC
jesse.j.campos@saic.com

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 2

IntroductionIntroduction

• DESCRIPTION – This tutorial is conducted in two consecutive parts. Part 1
covers creation and writing of SEDRIS transmittals. Part 2 focuses on
accessing or extracting data from SEDRIS transmittals. Each part is conducted
independent of the other. Common application development techniques and
strategies utilized in the production and consumption of SEDRIS transmittals
are covered. The steps in development of mapping documents and the
effective use of the SEDRIS API are discussed. A number of examples based
on actual use cases are reviewed.

• WHO SHOULD ATTEND – Software engineers who intend to develop tools,
utilities, or conversion applications to operate on SEDRIS transmittals.

• PREREQUISITE – Prior attendance at the "Fundamentally SEDRIS: The
Technology Components" tutorial, the "Fundamentals of the DRM" tutorial, and
the "Developing Effective Applications with the SEDRIS API" tutorial is
recommended.

• WHAT TO EXPECT – At completion, the attendee should have a working
understanding of the various how-to techniques for use of the SEDRIS API in
the creation or extraction of transmittals.

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 3

PrerequisitePrerequisite

• To get the most from this tutorial, we assume you know
the following information as a prerequisite to this
session:

– Solid understanding of the SEDRIS technology components.
– Have attended at least one of the Fundamental of the DRM and

Fundamentals for Accessing Transmittals tutorials.
– Solid understanding of software development principles.

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 4

Putting It All TogetherPutting It All Together
• Use all of the SEDRIS Technology Components

– Data Representation Model (DRM)
– Spatial Reference Model (SRM)
– Environmental Data Coding Specification (EDCS)
– Interface Specifications (API)
– SEDRIS Transmittal Format (STF)

• Combine with
– SEDRIS tools & applications
– SEDRIS documentation

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 5

Implementation Versus DesignImplementation Versus Design
• Implementation

– Fundamentals of the DRM Tutorial
– Fundamentals for Accessing Transmittals Tutorial
– Focus: Mechanics

• Design
– Techniques
– Common strategies
– Products required
– Focus: the application of knowledge gained; i.e., wisdom

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 6

Verify
Transmittal

Verify
Transmittal

Develop
Transmittal
Production

Software

Develop
Transmittal
Production

Software

Map Native
Data Model

To
SEDRIS

Map Native
Data Model

To
SEDRIS

Tasks done by Data Provider

Market Need,
Use Cases,
& Env Data
Exchange

Needs

Market Need,
Use Cases,
& Env Data
Exchange

Needs

Native
Data Set “X”

Mapping
Document

STF

Develop
Transmittal

Consumption
Software

Develop
Transmittal

Consumption
Software

Map
SEDRIS

To
 Native

Data Model

Map
SEDRIS

To
 Native

Data Model

Market Need,
Use Cases,
& Env Data
Exchange

Needs

Market Need,
Use Cases,
& Env Data
Exchange

Needs

Mapping
Document

Application “Y”
Native Data

Tasks done by Data Consumer

Application
 “Y” Data

Concept

Production and Consumption ProcessProduction and Consumption Process

TCRS

TCRS
Verify

Transmittal

Verify
Transmittal

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 7

Agenda: ProducingAgenda: Producing

• SEDRIS Transmittals
• Transmittal Creation Process

– Native analysis
– The mapping document

• Feature versus geometry representation
• Object sharing
• Utilizing component inheritance.
• Transmittal metadata

– <Hierarchy Summary Item>
– Develop Validation Criteria
– Using the SEDRIS Write API
– Validation and testing utilities

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 8

SEDRIS TransmittalsSEDRIS Transmittals

• A realization of environmental data a collection of DRM-compliant
instances accessible through the SEDRIS API

• Transmittals must satisfy the DRM and as such are complete unto
themselves

Transmittal Root

Image Library

Image

Environment Root

Polygon

Union of Primitive Geometry

Vertex

Classification Data

Access

Description

Responsible Party

Citation

Image

Image
Vertex Vertex

Location Location Location

Polygon

Vertex Vertex Vertex

Location Location Location

Sample Transmittal

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 9

SEDRIS Transmittals [2 of 5]SEDRIS Transmittals [2 of 5]

• A Transmittal may reference data in another Transmittal
• This capability is termed Inter Transmittal Referencing (ITR)
• i.e., there is an ITR reference between the above two transmittals

Transmittal Root

Environment Root

Union of Primitive Geometry

Polygon

Vertex Vertex Vertex

Location Location Location

Transmittal Root

Environment Root

Property Grid Hook Point

Axis Property Description

Property Grid

Access

Description

Responsible Party

Citation

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 10

SEDRIS Transmittals [3 of 5]SEDRIS Transmittals [3 of 5]

• Using the SEDRIS SDK
– Transmittals are stored in STF
– Consists of a set of STF files

• One root file used for opening
• Variable number of object files based on the count

of objects in the transmittal
• Variable number of <Image> and <Data Table> data

files

S
ED

R
IS

 A
PI

STF
Reference

Implementation

Transmittal
Production

Software

Transmittal
Production

Software

Native
Data Set “X” STF

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 11

• ITR in the SDK

STF Files STF Files
STF Files

Transmittal Root

Image Library

Image

Environment Root

Polygon

Union of Primitive Geometry

Vertex

Classification Data

Access

Description

Point of Contact

Citation

Image

Image
Vertex Vertex

Location Location Location

Polygon

Vertex Vertex Vertex

Location Location Location

Transmittal Root
Transmittal Root

SEDRIS Transmittals [4 of 5]SEDRIS Transmittals [4 of 5]

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 12

SEDRIS Transmittals [5 of 5]SEDRIS Transmittals [5 of 5]

• What is in a (transmittal) name
– Produced Name –

• Stored in the transmittal in the <Transmittal Root> field value
• SE_STRING

– File Name
• Provided through the API when opening in Create mode
• Assigned to the STF root file by the STF implementation

– URN Name
• Uniform Resource Name
• Resolves to a Universal Resource Locator (URL)
• Used to create ITR references
• Example: urn:x-sedris:saic:bellevue:1
• Assigned through the API, stored in STF root file

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 13

The Process of Creating a TransmittalThe Process of Creating a Transmittal

Step 1: Native Requirements & Data Analysis: Define use or
application plus data exchange requirements

Step 2: Develop Mapping Document: Use DRM, EDCS and SRM

Step 3: Develop Validation Criteria -- TCRS

Step 4: Develop Production software: Add in API and STF

Step 5: Validate Transmittal: Add in tools and applications

Verify
Transmittal

Verify
Transmittal

Develop
Transmittal
Production

Software

Develop
Transmittal
Production

Software

Map Native
Data Model

To
SEDRIS

Map Native
Data Model

To
SEDRIS

Tasks done by Data Provider

Market Need,
Use Cases,
& Env Data
Exchange

Needs

Market Need,
Use Cases,
& Env Data
Exchange

Needs

Native
Data Set “X”

Mapping
Document

STF

TCRS

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 14

Step 1: Native AnalysisStep 1: Native Analysis

• Goal: Capture all known and potential uses for native
data.

• Analyze:
• use cases

• application requirements

• data content and utility

• data customer needs and applications

• data deficiencies (e.g. metadata, data augmentation, …)

• Determine best way to maximize market potential for
data being produced in STF

• Use the analysis to focus your mapping efforts
in Step 2

Environment
Data Requirements

Market Need,
Use Cases,
& Env Data
Exchange

Needs

Market Need,
Use Cases,
& Env Data
Exchange

Needs

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 15

Step 2: Mapping DocumentStep 2: Mapping Document

• Purpose
• Document the translation from a native data model to DRM
• Find any problems the DRM, EDCS, or SRM does not handle with your

production application

SRM DRM EDCS

Map Native
Data Model

To
SEDRIS

Map Native
Data Model

To
SEDRIS

Market Need,
Use Cases,
& Env Data
Exchange

Needs

Market Need,
Use Cases,
& Env Data
Exchange

Needs

Native
Data Set ì Xî

Mapping
Document

• Goals:
• Map native data

organization to the
DRM

• Use correct EDCS
entries

• Document mapping
• Provide design criteria

for software
development

• Provide validation
criteria for STF content

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 16

Step 2: Mapping Document [2 of 3]Step 2: Mapping Document [2 of 3]

• First: List
– primitive data elements within your native data

• Second: Categorize
– Primitive data (locations, polygons, lights, etc.)
– Organizing elements (a bag of, a tile of, etc.)
– Descriptions (attributes, classifications etc.)
– Implementation artifacts (text strings, run time values)

• Third: Learn
– Primitive data classes

• <Point Feature>, <Linear Feature>, and <Areal Feature>,
• <Point>, <Polygon>, <Light Source>, <Image>, <Sound>,
• <Property Grid>, <Property Table>, etc.

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 17

Step 2: Mapping Document [3 of 3]Step 2: Mapping Document [3 of 3]

• Third: Learn
– Descriptive classes

• <Location>, <Color>, <Classification>,
<Transformation>, <Properties>

– Organizing Containers classes
• Hierarchies, Libraries

• Fourth: Map
– Document the mapping in the document
– Document the EDCS codes to be used

• Fifth: Request
– DRM
– SRM
– EDCS

• Classifications
• Attributes

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 18

Mapping Document:Mapping Document:
Features versus GeometryFeatures versus Geometry

• What type of data do you have?
– Visual
– Measured
– Abstract
– SAF

• Both available
– Provide both representations
– Provide associations between them
– Allows consumers to correlate the data

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 19

Mapping Document : Data MappingMapping Document : Data Mapping

• Consumer oriented versus “write only”
– Map intrinsically environmental parts of your data
– “Value added” data
– Discard data implementation artifacts

• A mapping test
– Self contained DRM mapping, Self describing data?

• Objective choices of classification and attribute
codes

• Clear organizational objectives
– Mapping Document

• Sufficient description of discarded artifacts to allow
the rebuilding of native data set?

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 20

Mapping Document: Object SharingMapping Document: Object Sharing

• Saves time and space
• Sharing through Aggregation

– Re-use the same instance of an object
– A relationship between objects is a fraction of the cost of

new objects

• DRM constructs for explicit sharing
– <Library>

• <Images>, <Models>, <Data Tables>, etc.
– <Property Set>

• A table of classification, property, rendering & meta data
objects

– <Colour Table>
• A table of primitive colors

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 21

Class diagrams (left) define rules.
Object diagrams (right) follow those rules.

<Vertices> can be shared by <Polygons>, because
a <Vertex> can be a component of 0 or more <Polygons>.

Polygon

Vertex

 {ordered}

V1

V2 V3

V5 V4

P2

P1

Polygon P1

Polygon P2

Sharing Components: DRM ExampleSharing Components: DRM Example

*

3..* Vertex V1 Vertex V2 Vertex V5 Vertex V4 Vertex V3

DRM Diagram - Sheet 5

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 22

Sharing reduces the number of objects in a transmittal.

In this example, the <Polygons> have a total of 5 <Vertices> if they
share their common <Vertices>, but 7 if they don’t. This savings may
seem trivial, but when you bring this into the realm of large
transmittals ...

Why Share?Why Share?

Polygon P1

Polygon P2

Vertex V2 Vertex V3

Shared

Polygon P2

Vertex V2’ Vertex V3’

Polygon P1

Vertex V2 Vertex V3

Not Shared

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 23

Why Share?Why Share?
Triangle Strip as an Example of SharingTriangle Strip as an Example of Sharing

• In a triangle strip of
500000 <Polygons>,
there are 1.5 million
<Vertices>, if none of
the <Vertex> instances
are shared.

• In a triangle strip such
as this, only 2 <Vertex>
objects could not be
shared, so sharing gives
us
500000 <Polygons> *
1 <Vertex> per <Polygon> +
2 <Vertices> =
500002 <Vertices>
with a savings of 66%.

P1

P2
P3

P4

P5
P6

P7
P8

P499999
P500000

P499999

P1

P2
P3

P4

P5
P6

P7
P8

P500000
P500000

P499999

Shared

V1

V2

V4

V6

V8

V10
V9

V1’

V2’, V4'

V5000001
V500002

Not Shared

V1500000’

V499999

V6’, V8’, V10’

V7

V5

V24’
V21’, V23’

V1499997’,
V1499999’

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 24

Mapping Document:Mapping Document:
Sharing with <Property Sets>Sharing with <Property Sets>

Union of Primitive Geometry

Vertex Location

Polygon

Vertex Location

Vertex Location

Property Set Index

Vertex Location

Polygon

Vertex Location

Vertex Location

Property Set Index

• Group a set of attributes under the <Property Set Table
Library>

• Use for <Geometry> and/or <Feature>
• Reference with an <Property Set Index>

Environment Root

Transmittal Root

Property Set

Classification Data

Rendering Priority

Image Mapping Function

Property Set Table Library

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 25

Mapping Document:Mapping Document:
Sharing with <Property Sets> [2 of 3]Sharing with <Property Sets> [2 of 3]

Union of Primitive Geometry

Vertex Location

Polygon

Vertex Location

Vertex Location

Classification Data

Rendering Priority

Image Mapping Func

Vertex Location

Polygon

Vertex Location

Vertex Location

Classification Data

Rendering Priority

Image Mapping Func

. . .

Union of Primitive Geometry

Vertex Location

Polygon

Vertex Location

Vertex Location

Property Set Index

Vertex Location

Polygon

Vertex Location

Vertex Location

Property Set Index

. . .

• Two possible representations providing the same
data
– Left one duplicates objects
– Right one uses the <Property Set Index>

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 26

Mapping Document:Mapping Document:
Sharing with <Property Sets> [3 of 3]Sharing with <Property Sets> [3 of 3]

Union of Primitive Geometry

Vertex Location

Polygon

Vertex Location

Vertex Location

Vertex Location

Polygon

Vertex Location

Vertex Location

• Replace the <Property Set Index> with
component relationships
– Simplifies consumption
– Space savings equivalent for small sets of properties
– Recommended method

Environment Root

Transmittal Root

Property Set

Classification Data

Rendering Priority

Image Mapping Function

Property Set Table Library

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 27

Mapping Document: Component InheritanceMapping Document: Component Inheritance

Aggregate Geometry

Primative Geometry

Aggregate Geometry

Color A

Aggregate Geometry

Color B

Inherits Color AInherits Color B

Overrides Inherited
Color A

Primative Geometry

*

*

*

**

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 28

Mapping Document:Mapping Document:
Component Inheritance [2 of 3]Component Inheritance [2 of 3]

• Components which are inherited from ancestors
– <Access>

– <Classification Data>

– <Data Quality>

– <Light Rendering Properties>

– <Rendering Priority Level>

– <Time Constraints Data>

– <Property Tables> (overridden per ECC code)

– <Property Table References> (overridden per ECC code)

– <Property Values> (overridden per EAC code)

– <Colours> (overridden per presentation domain)

– <Rendering Properties> (overridden per presentation domain)

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 29

Mapping Document:Mapping Document:
Component Inheritance [3 of 3]Component Inheritance [3 of 3]

• Other components affected by inheritance:
– <Property Set Index>

• Referenced inheritable components are inherited
– <Image Mapping Functions>

• At each level overrides as a group
– <Location>

• Inherited by Reference Vectors
• Reference:

– SEDRIS Technology Documentation Set
– Part 4:Technical Reference Set
– Volume 9: Attribute Inheritance and Context Technical Guide

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 30

Mapping Document: Mapping Document: Transmittal MetadataTransmittal Metadata

• Attached to <Transmittal Root>
– <Access>
– <Citation>
– <Description>
– <Keywords>
– <Responsible Party>

• Use data relevant per transmittal
• URN Name

– Optional through the API
– Register with SEDRIS organization
– Uniquely identify the transmittal and the creating

organization

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 31

Mapping Document: Mapping Document: Summary ItemsSummary Items
• <Hierarchy Summary Item> describes the organization

of a Transmittal
– Can represent the exact structure of a Transmittal

• <EDCS Summary Item>
– Class to define a classification code and a set of attributes

• <DRM Class Summary Item>
– Lists all classes used in a Transmittal

• <Primitive Summary Item>
– Can represent the structure of primitive objects

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 32

Environment Root

Union of
Primitive Geometry

Level of Detail Related Geometry

Union of
Primitive Geometry

Union of
Geometry Hierarchy

Polygon
Polygon

Polygon
Polygon

Polygon
Polygon

Polygon
Polygon

Polygon
Polygon

Polygon
Polygon

Polygon
Polygon

Polygon
Polygon

Union of
Primitive Geometry

Union of
Primitive Geometry

Classification
Data

Hierarchy Summary Item
(LoDRG, 1)

Hierarchy Summary Item
(UoPG, 2)

Hierarchy Summary Item
(UoGH, 1)

Primitive Summary Item
(Polygon, 4)

Hierarchy Summary
Item (UoPG, 2)

EDCS Use
SummaryItem

Primitive Summary Item
(Polygon, 4)

Mapping Document: Mapping Document: Summary Items Summary Items [2 of 2][2 of 2]

Association

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 33

Step 2: Mapping DocumentStep 2: Mapping Document

• Benefits
– Described the conversion from a native format to

SEDRIS
– Provided a road map for consumers
– Found any problems the DRM, EDCS, or SRM does

not handle
– Have a clear understanding of what you want your

Transmittal to look like
– Clear documentation to evaluate how well you

succeeded
– Easy place to analyze SEDRIS specific information
– The hard part is done

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 34

 CTDB to STFCTDB to STF Mapping ExampleMapping Example

– Converts data designed for Semi-Automated
Forces (SAF) application into SEDRIS

– Does not map run time information
– CTDB constructs refer to items as features,

but DRM requires more decomposition
– Decompose into objects with features
– Decompose into classifications with property

values.

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 35

Sample Basic MappingsSample Basic Mappings

<Spatial Domain>min_x, max_x, min_y, max_y

<Environment Root>origin_northing, origin_easting,
origin_zone_number, datum,

Not savedsub_format
Not savedpatch_cache_size_map
Invalid; not savednum_features

Not savedName
Not savedversion

Not savedDate
Not savednum_nodes

EACCTDB Attribute

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 36

Mapping Mapping Attributes of Water CharacteristicsAttributes of Water Characteristics

EAC_WATER_BODY_SURFACE_TEMPERATURESurface_temp

EAC_MAXIMUM_WAVE_HEIGHTSurf_height

EAC_SIGNIF_PRIMARY_BREAKER_HEIGHTPrimary_wave.Height

EAC_MEAN_PRIMARY_WAVE_PERIODPrimary_wave.Period

EAC_PRIMARY_WAVE_DIRECTIONPrimary_wave. Direction

EAC_SIGNIF_SECONDARY_BREAKER_HEIGHTSecondary wave.Height

EAC_MEAN_SECONDARY_WAVE_PERIODSecondary wave.Period

EAC_SECONDARY_WAVE_DIRECTIONSecondary wave.Direction

EACCTDB Attribute

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 37

Mapping Mapping Attributes of Water CharacteristicsAttributes of Water Characteristics
[2 of 2][2 of 2]

TT Data Table Libraray

Property Table

Table Property Description

Regular Axis

Table Property Description

Classification Data

Water Characteristics

Table Property Description

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 38

Mapping Mapping Abstract FeaturesAbstract Features

<Point Feature>ECC_ENTRANCE_AND_OR_EXITEntry_pt_index from
FIGHTING_POS

<Point Feature>ECC_WEAPON_HULL_DEFILADE_POSITIONHide_pos_index
from FIGHTING_POS

ECC_ENGINEER_TRENCH

ECC_TERRAIN_CRATER

ECC_BRIDGE_SPAN

ECC_TERRAIN_TRANSPORTATION_ROUTE

ECC

<Linear Feature>OFFROAD_SEGMENT

<Areal Feature>BRIDGE

<Areal Feature>CRATER

<Linear Feature>DITCH

DRM ClassCTDB Abstract
Feature

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 39

Mapping CraterMapping Crater

EAC_DEPTH_BELOW_SURFACE_LEVELDepth

(Unsupported)Cell_id

Avoid

Crater_type

Force_id

CTDB Attribute

EAC_MILITARY_FORCE_ALLEGIANCE

EAC_TERRAIN_OBSTACLE_TYPE

EAC_PASSAGE_BLOCKED

EAC

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 40

Mapping DitchMapping Ditch

(Unsupported)Cell_id

EAC_DEPTH_BELOW_SURFACE_LEVELDepth

EAC_PASSAGE_BLOCKEDAvoid

Parapet

Atd_type

Force_id

CTDB Attribute

EAC_MILITARY_FORCE_ALLEGIANCE

EAC_ENGINEER_TRENCH_TYPE

EAC_HEIGHT_ABOVE_SURFACE_LEVEL

EAC

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 41

Crater RepresentationCrater Representation

Areal Feature

Classification Data

tag = ECC_TERRAIN_CRATER

Property Value

meaning = EAC_MILITARY_FORCE_ALLEGIANCE

Property Value

meaning = EAC_TERRAIN_OBSTACLE_TYPE

Property Value

meaning = EAC_PASSAGE_BLOCKED

Property Value

meaning = EAC_DEPTH_BELOW_SURFACE_LEVEL

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 42

Trench RepresentationTrench Representation

Linear Feature

Classification Data

tag = ECC_ENGINEER_TRENCH

Property Value

meaning = EAC_MILITARY_FORCE_ALLEGIANCE

Property Value

meaning = EAC_ENGINEER_TRENCH_TYPE

Property Value

meaning = EAC_HEIGHT_ABOVE_SURFACE_LEVEL

Property Value
meaning = EAC_PASSAGE_BLOCKED

Property Value

meaning = EAC_DEPTH_BELOW_SURFACE_LEVEL

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 43

Step 3: Validation CriteriaStep 3: Validation Criteria

Mapping
Document

TCRS

• The mapping document provides transmittal
instance diagrams that are valuable for
validating the produced transmittal.

• This can be done through inspection, but that is
time consuming and problematic.

• Instead, a TCRS can be derived which defines
the exact requirements that must be met by the
production application.

• This is done by the TCRS_Checker application
which compares a transmittal to the data
requirements specified in the TCRS document.

• Thus, in this step, the requirements are to be
captured as exit criteria for production.

• These requirements are defined in terms of the
DRM including EDCS & SRM.

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 44

Sample Transmittal Requirement #1Sample Transmittal Requirement #1

Classification Data

Point Feature

Property Value
EAC_WIDTH

ECC_TREE

Property Value

EAC_STEM_DIAMETER

Domain

Condition

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 45

Sample Transmittal Requirement #2Sample Transmittal Requirement #2

Classification Data

Point Feature

Property Value
EAC_WIDTH

ECC_TREE

Property Value

EAC_STEM_DIAMETER

Domain

Condition

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 46

Sample Transmittal Requirement #3Sample Transmittal Requirement #3

Classification Data

Point Feature

Property Value

EAC_WIDTH

ECC_TREE

Property Value

EAC_STEM_DIAMETER

Domain

Condition

OR

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 47

• First: Learn basic calls of the SEDRIS API: Mostly
insertion functionality

• Second: Get SEDRIS SDK
• Standard file directory structure

• Populated with the SEDRIS developer's source code
distribution and sample data sets

• Third: Create translating application
• Developer has full control

• Choose optimal traversal of native data

• Access to native data

• Finally: Create the STF
• Link application to core libraries

• Run Application

Step 4: Creating a TransmittalStep 4: Creating a Transmittal

API STF

Develop
Transmittal
Production

Software

Develop
Transmittal
Production

Software

Native
Data Set “X”

Mapping
Document

TCRS

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 48

Step 4: Creating a Transmittal [2 of 2]Step 4: Creating a Transmittal [2 of 2]

Native Data File(s)

Translating Application

DRM SRM EDCS Transmittal Access

STF Reference Implementation

STF File(s)

API Specification

Reference Library

Developer Code

Binary Files

EDCSSRMDRM
RAIF

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 49

• Open a transmittal for writing
• For each mapped SEDRIS object instance:

– Create (allocate) an object of the appropriate
type

– Put object data (field values)
– Set component, association, and link

relationships
• Add data

– <Data Table> data
– <Image> data

• Free object memory & close the Transmittal

Production OperationsProduction Operations

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 50

• Determine if ITR should be used when producing
data
– Will you break the transmittals into smaller transmittals?
– Do you need incremental updates?
– Do you want to share someone else’s data?
– Do you want to create the data in a parallel fashion?

• To use ITR one must:
– Both the referencing object and the referenced object

being referenced must be published through the API.
• SE_PublishObject

– All transmittals that contain objects using ITR must be
assigned a URN name

• SE_SetURNName

Production ConsiderationsProduction Considerations

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 51

• Edit Operations
– Overwriting object fields
– Remove objects
– Remove object relationships

• Use as a post processing mechanism
• Example:

– Models with has_units set to false
– Producer in Pennsylvania, user in Florida
– Producer was made aware of issue, consumer

corrected Transmittal

Production Considerations [2 of 3]Production Considerations [2 of 3]

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 52

• Object ID mechanism
– SE_GetIDStringForObject()
– SE_GetObjectFromIDString()

• Used IDs to retrieve objects already created
– Exploit the sharing mechanism
– Can be used to create an object without having to

specify all of its relationships

• Provides the mechanism to map native objects to
objects created through the API

Production Considerations [3 of 3]Production Considerations [3 of 3]

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 53

• Open Transmittal (mode=SE_AC_MODE_CREATE)
• Create <Transmittal Root> and set its fields
• Set the <Transmittal Root> as the root object

• Create other objects
• Set field values and call SE_PutFields()
• If SE_PutFields() is not called will store default fields

• Make relationships between objects
• Add components to objects
• Add associations between objects
• Use Object IDs to retrieve objects already created

• Free objects when no longer needed
• Close Transmittal

– Handle API validation
– Correct version, root object has been set

Basics of a Translating ApplicationBasics of a Translating Application

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 54

Step 5: Validate TransmittalStep 5: Validate Transmittal

• Depth
– traverses the entire transmittal hierarchy

– reports statistics on types and numbers
of objects encountered

• Transmittal Browser: View the hierarchy of a
SEDRIS transmittal

• TCRS Checker:
– Validate STF with TCRS

– Return explicit problems

• Modify production software: iterate until STF is valid

Verify
Transmittal

Verify
Transmittal

Develop
Transmittal
Production

Software

Develop
Transmittal
Production

Software

STF

TCRS

• Syntax Checker: checks
DRM compliance

• Rules Checker: checks DRM
constraints

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 55

Questions ?Questions ?

• Questions on Producing?

• Documentation
– SEDRIS Technology Documentation Set
– Part 4: Technical Reference Set
– Volume 14: How to Produce SEDRIS Transmittals

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 56

Agenda: ConsumingAgenda: Consuming

• Using SEDRIS
• Translating
• Consuming SEDRIS

– Native Analysis
– Mapping Document
– Extraction Capabilities
– Consuming Techniques

• TCRS
– Consumption Strategies

• Consumption Challenge
• Solution Path

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 57

Using SEDRISUsing SEDRIS

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 58

Using SEDRIS [2 of 2]Using SEDRIS [2 of 2]

• Importing into a native format
– STF to CTDB
– CCTT Correlated Databases

• Importing to add value to a transmittal
– SEE-IT
– Side-by-Side Viewer

• Both

SEDRIS

NativeNative
DatabaseDatabase
Format 1Format 1 NativeNative

DatabaseDatabase
Format 2Format 2

NativeNative
DatabaseDatabase
Format 3Format 3

NativeNative
DatabaseDatabase
Format 4Format 4

NativeNative
DatabaseDatabase
Format 5Format 5

NativeNative
DatabaseDatabase
Format 6Format 6

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 59

SEDRIS is about …SEDRIS is about …
• Representation of environmental data

– a language that *allows* articulation and expression of
environmental data

• Interchange of environmental data
– mechanisms to export and import data between different

systems that speak the representational aspect of SEDRIS

• With this in mind ...

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 60

Translating: the Language AnalogyTranslating: the Language Analogy
• Meaning is context sensitive -- Sometimes more than one context.
• Humans can derive the context, hence phrases such as:

– “The TV show has jumped the shark”
– Parsing the words will not help, need the context

• Machines cannot derive context
– Data must be unambiguous
– Data must be loss-less
– Data must be specific and constant

• Likewise, the same problems appear when describing
the world to automated systems

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 61

Elements of Successful TranslationElements of Successful Translation

• Parse-able syntax:
– DRM

• Structural semantics - well-defined (or at least well-
understood) grammar in the (common/foreign)
language
– SEDRIS: DRM semantics

• Reasonable mapping of input language to output
language possibilities
– if the languages don’t match in expressive or

representation power, stop, we have a problem!

• Data’s organizational semantics
– e.g. Airport: point feature; areal feature; bag of

polygons; spatially-organized bags of polygons; bag
of “objects”; spatially-organized bags of “objects”, …

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 62

Elements of Successful Translation [2 of 2]Elements of Successful Translation [2 of 2]

• Context & understanding, or at least knowledge of
context

• “Translator’s” command of both languages
– how good is the algorithm/logic for translation and how

well it’s implemented

• Use of “translation services”
– e.g. API, filters, …

• Post-translation value-adding
– e.g. turn polygons for use by z-buffer; undo SRF

translation
• Post-translation tailoring

– e.g. tune polygons for runtime processing

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 63

Needs & ExpectationsNeeds & Expectations

• Common Language - DRM
– Proper syntax
– Expressive grammar
– Dictionary of terms
– Meta-data for structural semantics, organizational

semantics, context semantics
• Common Dictionary – EDCS

– Classification i.e. “things”
– Attributes – “adverbs & adjectives”

• Common Understanding – SRM
– Framework to convert data elements

• Common Services – API
– Access all “language” elements
– Provide filtering (common & controllable)
– Provide SRM operations
– Common “value-adding” modules

SEDRIS

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 64

Verify
Transmittal

Verify
Transmittal

Develop
Transmittal
Production

Software

Develop
Transmittal
Production

Software

Map Native
Data Model

To
SEDRIS

Map Native
Data Model

To
SEDRIS

Tasks done by Data Provider

Market Need,
Use Cases,
& Env Data
Exchange

Needs

Market Need,
Use Cases,
& Env Data
Exchange

Needs

Native
Data Set “X”

Mapping
Document

STF

Develop
Transmittal

Consumption
Software

Develop
Transmittal

Consumption
Software

Map
SEDRIS

To
 Native

Data Model

Map
SEDRIS

To
 Native

Data Model

Market Need,
Use Cases,
& Env Data
Exchange

Needs

Market Need,
Use Cases,
& Env Data
Exchange

Needs

Mapping
Document

Application “Y”
Native Data

Tasks done by Data Consumer

Application
 “Y” Data

Concept

Production and Consumption ProcessProduction and Consumption Process

TCRS

TCRS
Verify

Transmittal

Verify
Transmittal

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 65

Consuming SEDRISConsuming SEDRIS

• Step 1: Native Analysis
– What are your data requirements?

• Step 2: Mapping Document
– Map the DRM to your data requirements

• Step 3: Learn Implementation Details
– Extraction capabilities
– Detailed DRM knowledge

• Step 4: Determine consumption philosophy
– TCRS

• Step 5: Create consumption software
– Taking advantage of the common services

• Step 6: Expand consumption base
– Reorganizing software

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 66

Step 1: Native AnalysisStep 1: Native Analysis

• Analyze your data requirements
• If you are a tool maker, what does your tool

require?
• If you want to import into a native format:

– What type of data does your native format
contain?

– Map your native data model to the SEDRIS DRM

• The SDRM is flexible (and the EDCS is complex)
– How much flexibility will you allow?
– How much complexity can you handle?

Market Need,
Use Cases,
& Env Data
Exchange

Needs

Market Need,
Use Cases,
& Env Data
Exchange

Needs

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 67

Step 2: Mapping DocumentStep 2: Mapping Document

• Describe the native primitive data: What is the native
organization?

• Describe the translation from SEDRIS
to native data/format
– What data maps from

SEDRIS to native
data model?

– What data do you
need to derive?

– What algorithm will
be used to derive
native information?

– What data are you
going to ignore?

• Any run time data requirements?
• Focus on primitive data

Map
SEDRIS

To
Native

Data Model

Map
SEDRIS

To
Native

Data Model

Market Need,
Use Cases,
& Env Data
Exchange

Needs

Market Need,
Use Cases,
& Env Data
Exchange

Needs

Mapping
Document

SRM DRM EDCS

Application “Y”
Native Data

Application
 “Y”

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 68

Example: DRM to CTDB MappingExample: DRM to CTDB Mapping

• CTDB: Volume Models (buildings, obstacles)
– Stored in CTDB as a set of 3D vertices representing the roofline

of the volume.
– SAF “drops down” walls to the terrain for each pair of vertices.
– CTDB limits number of vertices to 15.

• DRM
– <Areal Feature>.

• With or without a <Property Value> to indicate the height above terrain
– <Union of Primitive Geometry>

• Classified with appropriate classification code
• What is appropriate – check the EDCS query tool

– <Point Feature>
• With or without <Property Value>to indicate height, width, and orientation
• With appropriate classification

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 69

DRM to CTDB Mapping [2 of 3]DRM to CTDB Mapping [2 of 3]

• CTDB –
– Tree lines

• Stored as a linear set of points
• Trunk Radius
• Foliage Height
• Fullness
• Total Height
• Affects intervisibility and acts as a obstacle to vehicle movement

– Individual Trees
• Stored as tree line with only one point

• DRM
– <Point Feature> classified as a tree
– <Linear Feature> classified as a tree line
– <Union of Primitive Geometry> classified as a tree or tree line
– <Areal Feature> classified as a tree

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 70

DRM to CTDB Mapping [3 of 3]DRM to CTDB Mapping [3 of 3]

• Tree Canopies
– CTDB

• Stored as a set of polygons representing the roof of the canopy
• The fullness of the canopy is also stored to represent the density of the

forest area
• Canopy polygons are used in intervisibility calculations

– DRM
• <Polygons> properly attributed
• <Areal Feature> properly attributed
• <Linear Feature> properly attributed

• Railroads and Pipelines
– CTDB

• Both stored as linear sets of points
– DRM

• <Point Feature>
• <Geometry>
• What is the complete classification?

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 71

Step 3: Learn Implementation DetailsStep 3: Learn Implementation Details

• Extraction Capabilities
– Tree traversal
– Selection and filtering of objects

• Spatial boundaries
• Search filters

– Automatic navigation via branching criteria
– Retrieval of entire object hierarchy
– Automatic transformation of coordinates & colors
– Object Identification
– Advanced DRM Functionality
– ITR

• DRM requirements

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 72

Description SEDRIS API

Open a Transmittal SE_OpenTransmittalByFile

Set the current SRF Parameters SE_SetSRFParameters

Set the Color Model SE_SetColorModel

Create a Search Boundary SE_CreateSpatialSearchBoundary

Create a Search Filter SE_CreateSearchFilter

Create an Iterator SE_InitializeComponentIterator

Retrieve an object SE_GetNextObject

Access and process object attributes

Free the object SE_FreeObject

Free the Iterator SE_FreeIterator

Free the Search Filter SE_FreeSearchFilter

Repeat for as many different Search Filters as desired

Free the Search Boundary SE_FreeSpatialSearchBoundary
Close the Transmittal SE_CloseTransmittal

Basic ExtractionBasic Extraction

Get the root object SE_GetRootObject

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 73

• Primitive’ objects
– Features

• <Point Features>, <Linear Features>, <Areal Features>
– Geometry

• <Camera Points>
• <Points>, <Lines>, <Arcs>, <Ellipses>, <Elliptic

Cylinders>
• <Polygons>, <Finite Element Meshes>
• <Light Sources>
• <Sounds>
• <Property Tables>, <Property Grids>
• <Images>

– Model Instances
• Modifiers, Attributes, & Components

– <Location>
– <Color>
– Classification
– Transformation

Detailed DRM KnowledgeDetailed DRM Knowledge

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 74

• Containers and Organizers
– <Transmittal Root> and <Environment Root>
– Libraries

• <Model>, <Image>, <Data Table>, <Property Set>,
<Colour Table>, <Symbol>, <Sound>

– Feature & Geometry Hierarchies
• Classification (ECC)
• Scale (ESC)
• Spatial Index
• Perimeter
• Time
• Level of Detail (LoD)
• Quad Tree & Oct Tree
• Alternate Hierarchy
• Separating Plane (G)
• Continuous LoD (G)
• Animation (G)
• Union

Detailed DRM Knowledge [2 of 3]Detailed DRM Knowledge [2 of 3]

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 75

Detailed DRM Knowledge [3 of 3]Detailed DRM Knowledge [3 of 3]
Transmittal Root

Level of Detail Related Geometry

VertexColorClassification

Polygon Polygon
Polygon

Polygon
Polygon

Union of
Primitive Geometry

Union of
Primitive Geometry

Environment Root

Classification Related Features

Union of
Features

Point Features
Point Features

Point Features
Point Features

Union of
Features

Feature
Classification

Feature
Classification

Model Library

Model

Image Library

Image
Image

Image
Image

Point of Contact Description

Primitives

Attributes

Containers

Union of
Primitive Geometry

Polygon
Polygon

Polygon
Polygon

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 76

• The mechanics of data extraction is the easy part ...
• By design, the SEDRIS API tackles ease-of-use issues

– Filtering is great, but what do you want to filter on/for?
• Before you start, you need a plan

– In particular, you need to be prepared to handle:
• Your ideal transmittal

– The one that you’d build, if you could ...
• Your acceptable transmittal

– The one that you could imagine someone building ...
• Your worst-case transmittal

– The one you can’t imagine that anyone in their right mind …
– More transmittals than you might like will be non-ideal

• You’ll need a plan … because you might not get what you want

• Be Prepared! Do your systems analysis, mapping, and design

Step 4: Consumption PhilosophyStep 4: Consumption Philosophy

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 77

Step 4: Consumption Philosophy [2 of 4]Step 4: Consumption Philosophy [2 of 4]

• Design and implement a data consumption strategy
which focuses on a narrow band of acceptable
transmittal data models?
– Reduces cost, but limits flexibility

• E.g., can I accept elevation grids instead of polygons?
– May not be scalable to other “nonstandard” data providers

• E.g., use NGA DTED instead of a prepared TIN?

• Design and implement a data consumption strategy
which accepts a wider range of transmittal data
models?
– Increases early costs, but enhances flexibility
– Should be scalable, given good design choices

• Goal: Design for the future, implement on the pay-as-
you-go plan

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 78

Step 4: Consumption Philosophy [3 of 4]Step 4: Consumption Philosophy [3 of 4]

• What are you consuming?
– Primitives with attributes/modifiers

• Find the least common denominator
– In SEDRIS terms

• Removes the organization issue

VertexColorClassification

Polygon

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 79

Step 4: Consumption Philosophy [4 of 4]Step 4: Consumption Philosophy [4 of 4]

• Transmittal Content Requirements Specification
(TCRS)
– Specification of what your software will minimally handle
– Provides different DRM representations that you will and

will not handle
– Defines the requirements of a Transmittal
– Allows you to evaluate Transmittal content
– NOT a Content Agreement
– Flows from the Mapping Document

• TCRS Example
– CATT CDB
– STF to CTDB

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 80

CATT TCRS Example [1 of 4]CATT TCRS Example [1 of 4]

• Section 3.1: Tree/Bush Models
– Structure: Model ? Feature Model ? Union of Features ? a single Point Feature
? Feature Node ? Location

– Requirements:
• A <Classification Data> component identifying model as a tree or bush:

EDCS_CC_TREE or EDCS_CC_SCRUB_OR_BRUSH_OR_BUSH
• A <Property Value> component specifying the height from ground to top of

foliage: attribute_code = EDCS_AC_HEIGHT_ABOVE_SURFACE_LEVEL in
meters and Float 32

• A <Property Value> component specifying the trunk diameter:
EDCS_AC_STEM_DIAMETER_SIZE in meters and Float 32

• A <Property Value> component specifying the foliage diameter: attribute_code =
EDCS_AC_LENGTH_OR_DIAMETER, in meters and Float 32

• A <Property Value> component specifying the foliage transmissivity between 0.0
and 1.0: attribute code = EDCS_AC_TRANSMISSIVITY, in percent and Float 32

• A <Property Value> component specifying the tree/bush type: attribute code =
EDCS_AC_VEGETATION_CHARACTERISTIC, an enumerator of Unsigned Int 16

• A <Property Value> component specifying the distance from the ground to the
foliage: attribute code = EDCS_AC_TREE_CANOPY_HEIGHT_LOWEST_BRANCH,
in meters and Float 32

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 81

CATT TCRS Example [2 of 4]CATT TCRS Example [2 of 4]

• Section 3.1: Tree/Bush Models

Feature Model

Model

Union of Features

Point Feature

Feature Node

Location
Classification Data:

EDCS_CC_TREE

Property Value: 16.7 M
EDCS_AC_HEIGHT_ABOVE_SURFACE_LEVEL

Property Value: 0.7 M
EDCS_AC_ STEM_DIAMETER_SIZE

Property Value: 7.6 M
EDCS_AC_ LENGTH_OR_DIAMETER

Property Value: SE_PROP_VAL_VEG_OAK
EDCS_AC_ VEGETATION_CHARACTERISTIC

Property Value: 2.3 M
EDCS_AC_TREE_CANOPY_HEIGHT_LOWEST_BRANCH

DESIRED

Property Value: 0.5
EDCS_AC_TRANSMISSIVITY

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 82

CATT TCRS Example [3 of 4]CATT TCRS Example [3 of 4]

• Section 4. Terrain Skin
– A continuous surface covering the extents of the database

– CATT stores the data as a two dimensional data table of
elevation values

– SEDRIS supports the concept of a terrain skin by allowing
items to be identified as “terrain”. Grids and other SEDRIS
objects can be identified as “terrain” through the use of
ECCs

– 2 SEDRIS constructs

• <Polygons> classified as terrain polygons

• <Property Grids> with elevation and diagonalization
issues

– So which did CATT choose?

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 83

CATT TCRS Example [4 of 4]CATT TCRS Example [4 of 4]

• BOTH

– CATT will consume a <Property Grid>

– Using a polygonal representation <Polygons> will have:

• An ECC of EDCS_CC_TERRAIN

• The SE_TERRAIN_POLYGON value set within the polygon_flags field
of the Polygon

• If the <Polygon> is a “cut” polygon, the SE_CUT_POLYGON value set
within the polygon_flags field

• If the <Polygon> is a “raised” or “fill” polygon, the
SET_RAISED_POLYGON value set with the polygon_flags field

• A <Property Value> of
EDCS_AC_SURFACE_TRAFFICABILITY_GROUP_CCTT

– For polygonal representation will include an empty <Property
Grid>

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 84

Example: STF to CTDB TCRSExample: STF to CTDB TCRS

• Limit terrain to:

• OR:

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 85

STF to CTDB TCRS [2 of 4]STF to CTDB TCRS [2 of 4]

• Buildings shall be:

• Roads and rivers:

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 86

STF to CTDB TCRS [3 of 4]STF to CTDB TCRS [3 of 4]

• Trees & tree lines:

• Tree Canopies

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 87

STF to CTDB TCRS [4 of 4]STF to CTDB TCRS [4 of 4]

• Railroad, power lines, & pipeline

• Soil information

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 88

Step 5: Consumption SoftwareStep 5: Consumption Software

• Must reflect (and implement) the input to
output mapping requirements

• Must rely on the input and the output
languages’ syntax and semantics (as opposed
to implied semantics)

• Must not make assumptions that are not
supported in the input or the output language

• Must not hard-wire extra-transmittal context
• Should use the common services to fullest

extent
• Must be able (and willing) to process enough

data to extract the information it needs

Develop
Transmittal

Consumption
Software

Develop
Transmittal

Consumption
Software

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 89

Consumption/translation strategiesConsumption/translation strategies

• Implement a method for each class in SEDRIS
(e.g., if a SIRG is found, do <action>)

• Use filters (API) to look for desired data

• Configure extraction approach based on syntax
and/or semantics data extracted from transmittal
or pre-processing of transmittal

• Combination of the above

• Use meta-data and summary information

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 90

• If you must transform SRFs or color systems, let the API do it
– It’s probably more efficient and more exact than what you may be

using currently
• Extract each <Library>, or the <Environment Root>, first?

– Get ‘em all, even if not used vs. Get ‘em as they are referenced
• Four basic <Environment Root> extraction strategies

– Get it all, everywhere
• Depth-first traversal of entire transmittal
• “walk the tree” and examine everything at application-level

– Get it all, somewhere
– Get some of it, everywhere
– Get some of it, somewhere

• Choice driven by application-requirements

Extraction TechniquesExtraction Techniques

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 91

• Use as much of the advanced features as you need!

Making the API work for youMaking the API work for you
extern SE_STATUS_CODE_ENUM
SE_InitializeComponentIterator(
 SE_OBJECT start_object,
 SE_SEARCH_BOUNDARY boundary,
 SE_SEARCH_FILTER filter,
 SE_BOOLEAN directly_attach_table_components,
 SE_BOOLEAN process_inheritance,
 SE_BOOLEAN transform_locations,
 SE_BOOLEAN follow_model_instances,
 SE_BOOLEAN evaluate_static_control_links,
 const SE_HIERARCHY_SELECT_PARAMETERS *select_parameters_ptr,
 const SE_HIERARCHY_ORDER_PARAMETERS *traversal_order_parameters_ptr,
 SE_GENERAL_TRAVERSAL_ENUM general_traversal_pattern,
 SE_ITR_TRAVERSAL_ENUM inter_transmittal_referencing_traversal,
 SE_ITERATOR *iterator_out_ptr);

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 92

• Retrieve based on locations
• Search Type

– Point: The center point of the object tested
– Bounding Box: A box around the object is tested
– Exact: The geometry of the object is tested

• Inclusion
– Full Inclusion: Objects must be fully contained within the search

bounds
– Partial Inclusion: Objects must only be partially contained

• Search box
• Define a min and max point in the SRM of the <Environment Root>

• Search dimensionality
– 2-D or 3-D
– 2-D allows infinite height/depth

Making the API work for you [2 of 13]Making the API work for you [2 of 13]

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 93

• Limiting the search through the search filters

• Get only:
– Objects of specific DRM classes
– Objects that have associate objects
– Objects that have associated objects of specific DRM class
– Objects with components of specific DRM classes
– Objects with components with specific field values
– Objects with specific field values
– Objects with specific field ranges
– Objects within X levels down the tree
– Objects that meet my specified function
– Combination of these items

Making the API work for you [3 of 13]Making the API work for you [3 of 13]

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 94

Union of Primitive Geometry

Vertex Location

Polygon

Vertex Location

Vertex Location

Propert Set Index

Vertex Location

Polygon

Vertex Location

Vertex Location

Property Set Index

. . .

Union of Primitive Geometry

Vertex Location

Polygon

Vertex Location

Vertex Location

Classification Data

Rendering Priority

Image Mapping Func

Vertex Location

Polygon

Vertex Location

Vertex Location

Classification Data

Rendering Priority

Image Mapping Func

. . .

• directly_attach_table_components
– When set to SE_TRUE, indexed components are replaced with

directly attached instances (right example)
– Examples: <Attribute Set Index> objects, <Color Index> , …

• Let the API do it
– Simplifies consumption
– Work with primitives

Making the API work for you [4 of 13]Making the API work for you [4 of 13]

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 95

Union of
Primitive Geometry

Polygon

Union of Geometry Hierarchy

Polygon

Union of
Primitive Geometry

Polygon PolygonPolygonGREEN

GRAY

Union of
Primitive Geometry

Polygon Polygon

Union of
Primitive Geometry

Polygon PolygonPolygon

GREEN

GREENGREEN

GRAY GRAYGRAY

• process_inheritance
– If set to SE_TRUE, returns inherited objects found higher in the

aggregation tree
– Removes interpretation
– Correctly flows to the primitives
– Simplifies the context issue

Making the API work for you [5 of 13]Making the API work for you [5 of 13]

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 96

• Simplifying Model Instances
• Follow Model Instances

– Attaches the model as a component
of the Model Instances

– Instantiates all data that the
<Model> contains

• Transform Locations
– LSR Model locations instanced in

the real world SRF

• Evaluate Static Control Links
– Will automatically calculate the field

values of <Model> data

• Basic consumption strategies:
– Use API to instance models
– Extract the <Model Library> before

extracting <Environment Root>(s)
– Application can transform models

Model

Model Library

Geometry Model

Union of
Primitive Geometry

Polygon

Vertex Vertex Vertex

LSR
Location 3D

LSR
Location 3D

LSR
Location 3D

Environment Root

Geometry Model Instance

World Transformation

TM Location 3D

Transmittal Root

Making the API work for you [6 of 13]Making the API work for you [6 of 13]

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 97

Model

Model Library

Geometry Model

Union of
Primitive Geometry

Polygon

Vertex Vertex Vertex

LSR
Location 3D

LSR
Location 3D

LSR
Location 3D

Environment Root

Geometry Model Instance

World Transformation

UTM Location 3D

Geometry Model

Union of
Primitive Geometry

Polygon

Vertex Vertex Vertex

LSR
Location 3D

LSR
Location 3D

LSR
Location 3D

Transmittal Root

• follow_model_instances set to SE_TRUE

Making the API work for you [7 of 13]Making the API work for you [7 of 13]

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 98

• follow_model_instances set to SE_TRUE
• transform_locations set to SE_TRUE

Model

Model Library

Geometry Model

Union of
Primitive Geometry

Polygon

Vertex Vertex Vertex

LSR
Location 3D

LSR
Location 3D

LSR
Location 3D

Environment Root

Geometry Model Instance

World Transformation

UTM Location 3D

Geometry Model

Union of
Primitive Geometry

Polygon

Vertex Vertex Vertex

Transmittal Root

TM
Location 3D

TM
Location 3D

TM
Location 3D

Making the API work for you [8 of 13]Making the API work for you [8 of 13]

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 99

Making the API work for you [9 of 13]Making the API work for you [9 of 13]

• Hierarchy selection & filtering
– Classification (ECC)
– Attribute (EAC)
– Spatial Index
– Time
– Level of Detail (LoD)
– Quad Tree & Oct Tree
– Separating Plane (G)

• Provides the capability to avoid paths in a hierarchy tree

Point

Classification Related
Features

Union of Features

Point
Point

Linear
Linear

Linear

Areal
Areal

Areal

Point

Union of Features

Point
Point

Linear
Linear

Linear

Areal
Areal

Areal

Point

Union of Features

Point
Point

Linear
Linear

Linear

Areal
Areal

Areal

Trees Roads Rivers

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 100

Polygon

Making the API work for you [10 of 13]Making the API work for you [10 of 13]
• Hierarchy Ordering
• Will return components in descending or ascending

order

Level of Detail Related Geometry

Union of Primitive
Geometry

Polygon
Polygon

5000+

Polygon

Union of Primitive
Geometry

Polygon
Polygon

Polygon

Union of Primitive
Geometry

Polygon
Polygon

1001 - 5000 0 - 1000

• Example:
– Ascending: Red, Green, Blue
– Descending: Blue, Green, Blue

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 101

Making the API work for you [11 of 13]Making the API work for you [11 of 13]
• Hierarchy Ordering example: Spatially Indexed

960 M

960 M G H I

D E F

A B C

Origin

• Ascending: G, H, I, D, E, F, A, B, C
• Descending: C, B, A, F, E, D, I, H, G

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 102

• Depth first
– F,G,B,M, N, H, I, J, C, K, L,E

• Breadth first
– B, C, E, F,G, H, I, J, K, L, M, N

A

C

JF

B

G I

E

LKH

NM

Making the API work for you [12 of 13]Making the API work for you [12 of 13]

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 103

• itr_traversal_order
– SE_ITR_BHVR_IGNORE

• Won’t see B
– SE_ITR_BHVR_RESOLVE

• Will return B
– SE_ITR_BHVR_REPORT

• Will say there is a B

Transmittal 1 Transmittal 2

A B

Making the API work for you [13 of 13]Making the API work for you [13 of 13]

• Should always resolve
– API will do the work
– Retrieve all the data

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 104

Step 6: Expand Consumption BaseStep 6: Expand Consumption Base

• Goal: Design for the future, implement on the
pay-as-you-go plan

• You can consume all possible SEDRIS Transmittals.
– But is that the best use of resources?
– In other words, what would happen if everyone did that?

SEDRIS

– Duplicated Effort

– Duplicated Code

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 105

Step 6: Expand Consumption Base [2 of 3]Step 6: Expand Consumption Base [2 of 3]

• More efficient consumption
• Consumer focus

– Focus on SEDRIS to native format
– Not focused on consuming all SEDRIS Transmittals

• So, how does a consumer expand his
consumption base?

SEDRIS

TCRS 1 TCRS 2

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 106

Step 6: Expand Consumption Base [3 of 3]Step 6: Expand Consumption Base [3 of 3]

• Recompiler
– Allows incremental development
– Provides a clear mechanism for validation of

transmittal
– Allows for reuse of software components
– Allows for development in SEDRIS components

• Larger base of users
• Larger code base
• Larger market place

SEDRIS

TCRS

TCRS
STF

Recompiler

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 107

Case StudyCase Study

• STF 2 CTDB
– Published TCRS
– Multiple passes of Transmittal
– Allows users the capability to define which classification

codes to use, specified at run time
– Problems if encounters classification codes not defined at run

time
– Process libraries at one time and stores relevant information
– Allows API to handle all inheritance issues

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 108

Case Study [2 of 2]Case Study [2 of 2]

• CCTT SAF
– Published CATT CDB TCRS
– 2 Data providers: E&S & LMIS
– Provided an application to re-organize STF into consumable

organization
– Must classify features with specific attribute code and classification

codes
• i.e., a tree shall have the following classification code with the

following attribute codes
– Strategy:

•Limit consuming software to a closely defined STF organization
•Provide application to create the closely defined STF organization

from other STF organizations
• Insulate the consumption software to deal with a subset of DRM

organizations

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 109

Current SolutionCurrent Solution
• Bridging the gap

– Each step is a multiplier
• TCRS XML encoding

– Allows for the clear specification of
requirements

– Allows for publishing requirements
• TCRS_Checker

– Evaluates a transmittal’s compliance
with a TCRS

– Provides failure instances
– Gating point for consumption

application
– Provides consumer’s flexibility on next

step
– Provides result’s as to how close the

STF comes to meeting your TCRS

TCRS

STF

TCRS
Checker

Consumption
Application

Results

Passes

YES

NO Rework
Application,
Recompiler,

Or STF?

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 110

Final Solution PathFinal Solution Path
• Transmittal Transformer

– Using an input TCRS and output TCRS,
transforms an STF to meet output TCRS

• Incremental Step
– Recompilers that take a TCRS compliant

STF and transform it into an STF compliant
to another TCRS

– Example: transforming an STF compliant
with the CCTT CDB TCRS to an STF
compliant with the STF to CTDB TCRS

• Next Steps
– Graphical TCRS

builders
– Transmittal analyzer

• Determine TCRS
of a transmittal

Your
TCRS

STF

TCRS 1
STF

TCRS 2
STF

STF

STF

STF

TCRS 3
STF

STF

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 111

Questions ?Questions ?

• Questions on Consuming?

• Documentation
– SEDRIS Technology Documentation Set
– Part 4: Technical Reference Set
– Volume 15: How to Consume SEDRIS Transmittals

