How To Produce & Consume Transmittals

http://www.sedris.org

SEDRIS™ Technology Conference
Lake Buena Vista, FL
9 January 2004

Jesse Campos
SAIC
jesse.j.campos@saic.com

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 1/9/2004

Introduction

e DESCRIPTION - This tutorial is conducted in tw o consecutive parts. Part 1
covers creation and w riting of SEDRIS transmittals. Part 2 focuses on
accessing or extracting data from SEDRIS transmittals. Each part is conducted
independent of the other. Common application development techniques and
strategies utilized in the production and consumption of SEDRIS transmittals
are covered. The steps in development of mapping documents and the
effective use of the SEDRIS APl are discussed. A number of examples based
on actual use cases are reviewed.

¢ WHO SHOULD ATTEND - Software engineers who intend to develop tools,
utilities, or conversion applications to operate on SEDRIS transmittals.

* PREREQUISITE - Prior attendance at the "Fundamentally SEDRIS: The
Technology Components" tutorial, the "Fundamentals of the DRM" tutorial, and
the "Developing Effective Applications with the SEDRIS API" tutorial is
recommended.

 WHAT TO EXPECT - At completion, the attendee should have a working
understanding of the various how -to techniques for use of the SEDRIS APl in
the creation or extraction of transmittals.

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 2

Prerequisite

 To get the most from this tutorial, we assume you know

the following information as a prerequisite to this
session:

— Solid understanding of the SEDRIS technology components.

— Have attended at least one of the Fundamental of the DRM and
Fundamentals for Accessing Transmittals tutorials.

— Solid understanding of software development principles.

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 3

Putting It All Together

« Use all of the SEDRIS Technology Components
— Data Representation Model (DRM)

— Spatial Reference Model (SRM)

— Environmental Data Coding Specification (EDCYS)

— Interface Specifications (API)

— SEDRIS Transmittal Format (STF)

e Combine with
— SEDRIS tools & applications
— SEDRIS documentation

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 4

Implementation Versus Design

* Implementation
— Fundamentals of the DRM Tutorial
— Fundamentals for Accessing Transmittals Tutorial
— Focus: Mechanics
e Design
— Techniques
— Common strategies
— Products required
— Focus: the application of knowledge gained; i.e., wisdom

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 5

Production and Consumption Process

Tasks-done by Data Provider

)
> Develop
i Transmittal
Mapping — _
PR Pt
SR
Map Native
Market Need, Date Model ¢ \
Use Cases, £ t
&EnvData | | SgpRis
Exchange e Vo
\NG‘_GdS/ Transmittal

Tasks done by Data Consumer

D)
Market Need, Verify A/
Use Cases, —p |Transmittal
& Env Data 4 » a LGRS
Exchange 2,0
9 |[——| sepris *
Needs To T

Native ' ‘
SOV Data Model \ Mapping Develop
App[j?;‘t'on / N—— Document | Transmittal Dat
Consumption| ata
i oy ’ Software »
Application *Y < Con t
Native Data __________/ 0 ,Cep

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 6

Agenda: Producing

e SEDRIS Transmittals

e Transmittal Creation Process

— Native analysis
— The mapping document

* Feature versus geometry representation
e Object sharing
e Utilizing component inheritance.
* Transmittal metadata
— <Hierarchy Summary ltem>

— Develop Validation Criteria
— Using the SEDRIS Write API

— Validation and testing utilities

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 7

SEDRIS Transmittals

Transmittal Root

Description Image Library Environment Root
Union of Primitive Geometry

Access |

Image
Responsible Party Polygon Classification Data Polygon

Image | |

Citation Vertex Vertex Vertex Vertex Vertex Vertex
Image [[[[[[

Location Location Location Location Location Location

Sample Transmittal

* A realization of environmental data a collection of DRM-compliant
Instances accessible through the SEDRIS API

« Transmittals must satisfy the DRM and as such are complete unto
themselves

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 8

SEDRIS Transmittals [2 of 5]

Transmittal Root

Transmittal Root

Environment Root

Description Environment Root
Union of Primitive Geometry
Access
li Property Grid Hook Point Polygon
Responsible Party | | | |
] Property Grid Vertex Vertex Vertex
— | | | |
Citation Location Location Location

Axis Property Description

A Transmittal may reference data in another Transmittal
* This capability is termed Inter Transmittal Referencing (ITR)
 J.e., thereis an ITR reference between the above two transmittals

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 9

SEDRIS Transmittals [3 of 5]

)

Transmittal
Production
Software

_______J

STF
Reference
Implementation

SEDRIS AP

e Using the SEDRIS SDK
— Transmittals are stored in STF

Copyright © 2004 SEDRIS™

— Consists of a set of STF files
* Oneroot file used for opening

* Variable number of object files based on the count
of objects in the transmittal

* Variable number of <Image> and <Data Table> data

files

How to Produce and Consume Transmittals

9 January 2004

10

SEDRIS Transmittals [4 of 5]

e ITRIn the SDK

Transmittal Root Transmittal Root
l Transmittal Root
]
|| |
Description Image Library Environment Root
I
Union of Primitive Geometry
Access | I
mage
— | I]
Point of Contact Polygon Classification Data Polygon
Image I I
: ‘ : I [| I [|
Citation Vertex Vertex Vertex Vertex Vertex Vertex
Image I I T T T T
‘ Location Location Location Location Location Location

=
I

i

Ty
STF Files
STF Files

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 11

H

SEDRIS Transmittals [5 of 5]

« Whatis in a (transmittal) name
— Produced Name —
« Stored in the transmittal in the <Transmittal Root> field value
« SE_STRING
— File Name
* Provided through the APl when opening in Create mode
« Assigned to the STF root file by the STF implementation
— URN Name
* Uniform Resource Name
Resolves to a Universal Resource Locator (URL)
Used to create ITR references
Example: urn:x-sedris:saic:bellevue:l
Assigned through the API, stored in STF root file

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 12

The Process of Creating a Transmittal

Tasks-done by Data Provider

D —
Native > Develop
Data Set “ X" :
Mapping Transmittal

> Production

\ Document Software \A
0\ Map Native
Market Need, Data Model ¢ /

Use Cases, i t

Exchange \) TCRS — Verify
. Needs) Transmittal

Step 1. Native Requirements & Data Analysis: Define use or
application plus data exchange requirements

Step 2: Develop Mapping Document: Use DRM, EDCS and SRM
Step 3: Develop Validation Criteria -- TCRS
Step 4. Develop Production software: Add in APl and STF

Step 5: Validate Transmittal: Add in tools and applications

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 13

Step 1: Native Analysis

Goal: Capture all known and potential uses for native

data.
4 N\ Environment
Analyze: Market Need, | Data Requirements
Use Cases,
* uSse cases &E f:gaagtea
e application requirements N Needs y

data content and utility

data customer needs and applications

data deficiencies (e.g. metadata, data augmentation, ...)

Determine best way to maximize market potential for
data being produced in STF

Use the analysis to focus your mapping efforts
In Step 2

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 14

Step 2: Mapping Document

Purpose
« Document the translation from a native data model to DRM
* Find any problems the DRM, EDCS, or SRM does not handle with your

production application a
. Natisve

Goals: t 5 X
 Map native data

organization to the

_ Mapping

DRM Market Need, ga!: I t:_V? Document
e Use correct EDCS Use Cases, Shsa L STegsy

entries & Env Data SEDRLLS

. Exchange
 Document mapping Needs
./

 Provide design criteria
for software
development

 Provide validation
criteria for STF content

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 15

Step 2: Mapping Document [2 of 3]

* First: List
— primitive data elements within your native data
« Second: Categorize
— Primitive data (locations, polygons, lights, etc.)
— Organizing elements (a bag of, atile of, etc.)

— Descriptions (attributes, classifications etc.)
— Implementation artifacts (text strings, run time values)

 Third: Learn
— Primitive data classes
* <Point Feature>, <Linear Feature>, and <Areal Feature>,
« <Point>, <Polygon>, <Light Source>, <Image>, <Sound>,
o <Property Grid>, <Property Table>, etc.

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 16

Step 2: Mapping Document [3 of 3]

e Third: Learn
— Descriptive classes
* <Location>, <Color>, <Classification>,
<Transformation>, <Properties>
— Organizing Containers classes

 Hierarchies, Libraries

* Fourth: Map
— Document the mapping in the document
— Document the EDCS codes to be used

* Fifth: Request
— DRM
— SRM

— EDCS

e Classifications
e Attributes

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 17

£ Mapping Document:
Features versus Geometry

 What type of data do you have?
— Visual
— Measured
— Abstract
— SAF

e Both available

— Provide both representations
— Provide associations between them
— Allows consumers to correlate the data

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 18

Mapping Document : Data Mapping

« Consumer oriented versus “write only”
— Map intrinsically environmental parts of your data
— “Value added” data
— Discard data implementation artifacts
A mapping test
— Self contained DRM mapping, Self describing data?

* Objective choices of classification and attribute
codes

* Clear organizational objectives
— Mapping Document

o Sufficient description of discarded artifacts to allow
the rebuilding of native data set?

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 19

Mapping Document: Object Sharing

e Saves time and space

« Sharing through Aggregation
— Re-use the same instance of an object
— A relationship between objects is a fraction of the cost of
new objects

« DRM constructs for explicit sharing
— <Library>

* <Images>, <Models>, <Data Tables>, etc.
— <Property Set>

A table of classification, property, rendering & meta data
objects

— <Colour Table>
* A table of primitive colors

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 20

Sharing Components: DRM Example

Polygon DRM Diagram - Sheet 5 Polygon P2

* Y

{ordered} 3 =

Vertex V1 || Vertex V2 || Vertex V5 || Vertex V4 || Vertex V3

Vertex |

() V1

Polygon P1

P1
V2 V3

P2

Class diagrams (left) define rules.
Object diagrams (right) follow those rules. V5 V4

<Vertices> can be shared by <Polygons>, because
a <Vertex> can be a component of O or more <Polygons>.

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004

21

Why Share?

Polygon P2

Y

Vertex V2 | Vertex V3
|

Polygon P1

Shared

Polygon P1

Y

Polygon P2

Y

Vertex V2 | Vertex V3 Vertex V2' || Vertex V3’

Not Shared

Sharing reduces the number of objects in a transmittal.

In this example, the <Polygons> have a total of 5 <Vertices> if they
share their common <Vertices>, but 7 if they don’t. This savings may
seem trivial, but when you bring this into the realm of large

transmittals ...

Copyright © 2004 SEDRIS™

How to Produce and Consume Transmittals 9 January 2004

22

Why Share?

Triangle Strip as an Example of Sharing

V10 -
- V499999

‘ P499999
P500000

V5000001
V500002

Shared

Copyright © 2004 SEDRIS™

L
*
‘ P499999
P500000
V1499997",

V1500000’ V1499999’

Not Shared

In a triangle strip of
500000 <Polygons>,
there are 1.5 million
<Vertices>, if none of
the <Vertex> instances
are shared.

In a triangle strip such
as this, only 2 <Vertex>
objects could not be
shared, so sharing gives

us

500000 <Polygons> *

1 <Vertex> per <Polygon> +
2 <Vertices> =

500002 <Vertices>

with a savings of 66%.

How to Produce and Consume Transmittals 9 January 2004 23

Mapping Document:
Sharing with <Property Sets>

Transmittal Root

Property Set Table Library Environment Root

Property Set Union of Primitive Geometry

Classification Data

Rendering Priority Polygon Polygon

Image Mapping Function — Property Set Index — Property Set Index
—1 Vertex [Location — Vertex — Location
—1 Vertex [— Location —1 Vertex [Location
— Vertex [Location — Vertex [Location

 Group a set of attributes under the <Property Set Table
Library>

 Use for <Geometry> and/or <Feature>
 Reference with an <Property Set Index>

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 24

Mapping Document:

;i Sharing with <Property Sets> [2 of 3]

B ;

\ =

Union of Primitive Geometry Union of Primitive Geometry

Polygon Polygon Polygon Polygon

— Classification Data — Classification Data — Property Set Index — Property Set Index

— Rendering Priority — Rendering Priority I Vertex H Location | Vertex H Location

| mage Mapping Func | _mage Mapping Func —T Vertex [—| Location —1 Vertex | Location

—T Vertex [Location — Vertex [Location _ _
—1 Vertex [Location —1 Vertex [Location

—T Vertex [Location —T Vertex [Location

— Vertex [Location — Vertex | Location

« Two possible representations providing the same
data

— Left one duplicates objects
— Right one uses the <Property Set Index>

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 25

Mapping Document:
Sharing with <Property Sets> [3 of 3]

Transmittal Root

Property Set Table Library Environment Root
Property Set Union of Primitive Geometry
Polygon Polygon

; Vertex [Location

ificati — Location

| Classification Data Vertex

- ; Vertex [Location

— Rendering Priority Vertex Location
- ; Vertex |+ Location

—1 Image Mapping Function Vertex Location

 Replace the <Property Set Index> with
component relationships
— Simplifies consumption
— Space savings equivalent for small sets of properties
— Recommended method

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 26

Mapping Document: Component Inheritance

Aggregate Geometry <H Color A
* T
Aggregate Geometry Aggregate Geometry

* * *
Color B

Overrides Inherited
Color A

Primative Geometry Primative Geometry

Inherits Color B Inherits Color A

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 27

Mapping Document:
Component Inheritance [2 of 3]

« Components which are inherited from ancestors
— <Access>
— <Classification Data>
— <Data Quality>
— <Light Rendering Properties>
— <Rendering Priority Level>
— <Time Constraints Data>
— <Property Tables> (overridden per ECC code)
— <Property Table References> (overridden per ECC code)
— <Property Values> (overridden per EAC code)
— <Colours> (overridden per presentation domain)

— <Rendering Properties> (overridden per presentation domain)

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 28

Mapping Document:
Component Inheritance [3 of 3]

 Other components affected by inheritance:
— <Property Set Index>
* Referenced inheritable components are inherited
— <Image Mapping Functions>
« At each level overrides as a group
— <Location>
 Inherited by Reference Vectors

 Reference:
— SEDRIS Technology Documentation Set
— Part 4: Technical Reference Set
— Volume 9: Attribute Inheritance and Context Technical Guide

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 29

Mapping Document: Transmittal Metadata

e Attached to <Transmittal Root>
— <Access>
— <Citation>
— <Description>
— <Keywords>
— <Responsible Party>

 Use data relevant per transmittal

 URN Name

— Optional through the API
— Register with SEDRIS organization

— Uniquely identify the transmittal and the creating
organization

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 30

Mapping Document: Summary ltems

e <Hierarchy Summary Item> describes the organization
of a Transmittal
— Can represent the exact structure of a Transmittal

e <EDCS Summary ltem>
— Class to define a classification code and a set of attributes

« <DRM Class Summary ltem>
— Lists all classes used in a Transmittal

 <Primitive Summary ltem>
— Can represent the structure of primitive objects

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 31

Mapping Document: Summary ltems [2 of 2]

Environment Root

Hierarchy Summary Item

Level of Detail Related Geometry L. (LoDRG, 1)
Association |
| |
Hierarchy Summary ltem Hierarchy Summary ltem
(UoPG, 2) (UoGH, 1)
Union of Union of Union of |
Primitive Geometry Primitive Geometry Geometry Hierarchy | |
’—‘ ’—‘ Primitive Summary Item Hierarchy Summary EDCS Use
(Polygon, 4) ltem (UoPG, 2) Summaryltem
Polygon Polygon
FUTyyu FOTyguo
Primitive Summary Item
(Polygon, 4)
Union of Union of Classification

Primitive Geometry

Primitive Geometry

Data

Copyright © 2004 SEDRIS™

Polygon

FUTy gurti

Polygon

TOTygu

How to Produce and Consume Transmittals

9 January 2004 32

Step 2: Mapping Document

» Benefits

— Described the conversion from a native format to
SEDRIS

— Provided a road map for consumers

— Found any problems the DRM, EDCS, or SRM does
not handle

— Have a clear understanding of what you want your
Transmittal to look like

— Clear documentation to evaluate how well you
succeeded

— Easy place to analyze SEDRIS specific information
— The hard part is done

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 33

CTDB to STF Mapping Example

— Converts data designed for Semi-Automated
Forces (SAF) application into SEDRIS

— Does not map run time information

— CTDB constructs refer to items as features,
but DRM requires more decomposition
— Decompose into objects with features

— Decompose into classifications with property
values.

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 34

Sample Basic Mappings

CTDB Attribute EAC
Imin_x, max_x, min_y, max_y <Spatial Domain>
lnum_features Invalid; not saved
lpatch_cache_size_m ap Not saved
sub_format Not saved
lorigin_northing, origin_easting, <Environment Root>
jorigin zone number, datum,
IName Not saved
version Not saved
Date Not saved
num_nodes Not saved

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 35

Mapping Attributes of Water Characteristics

CTDB Attribute EAC
Surface _temp EAC WATER BODY_ SURFACE TEMPERATURE
Surf_height EAC_MAXIMUM_WAVE_HEIGHT
IPrimary_wave.Height EAC_SIGNIF_PRIMARY BREAKER HEIGHT
Primary_wave.Period EAC_MEAN_ PRIMARY_WAVE_PERIOD
[Primary_wave. Direction EAC_PRIMARY_WAVE_DIRECTION
ISecondary wave.Height EAC_SIGNIF_SECONDARY_BREAKER_HEIGHT
Secondary wave.Period EAC_MEAN_SECONDARY_WAVE_PERIOD
ISecondary wave.Direction EAC_SECONDARY_WAVE_DIRECTION

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 36

12 of 2]

- —

Data Table Librarav

|
Property Table I L
Classification Data/ I
Reaular Axis I
Table Propertv Descrintion I

Table Propertv Descrintion I

Table Propertv Descrintion I

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 37

Mapping Abstract Features

CTDB Abstract ECC DRM Class
Feature

[OFFROAD_SEGMENT ECC_TERRAIN_TRANSPORTATION_ROUTE <Linear Feature>

IBRIDGE ECC_BRIDGE_SPAN <Areal Feature>

ICRATER ECC_TERRAIN_CRATER <Areal Feature>

DITCH ECC_ENGINEER_TRENCH <Linear Feature>
I;—Iide_pos_index ECC_WEAPON_HULL_DEFILADE_POSITION KPoint Feature>

rom FIGHTING _POS

Entry pt_index from ECC_ENTRANCE_AND_OR_EXIT <Point Feature>
FIGHTING_POS

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 38

Mapping Crater

CTDB Attribute EAC
IForce_id EAC MILITARY_FORCE_ALLEGIANCE
Crater_type EAC _TERRAIN _OBSTACLE TYPE
IAvoid EAC PASSAGE BLOCKED
Cell id (Unsupported)
Depth EAC DEPTH BELOW _ SURFACE_LEVEL

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 39

Mapping Ditch

CTDB Attribute EAC
IForce_id EAC MILITARY_FORCE_ALLEGIANCE
IAtd_type EAC ENGINEER_TRENCH_TYPE
Parapet EAC HEIGHT ABOVE SURFACE_LEVEL
IAvoid EAC PASSAGE BLOCKED
Cell _id (Unsupported)
Depth EAC DEPTH BELOW _ SURFACE_LEVEL

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 40

Crater Representation

Classification Data
tag=ECC_TERRAIN_ CRATER

Property Value

meaning = EAC_MILITARY_FORCE_ALLEGIANCE

Areal Feature <

Property Value

meaning = EAC_TERRAIN_OBSTACLE_TYPE

Property Value

meaning = EAC_PASSAGE_BLOCKED

Property Value

meaning = EAC_DEPTH_BELOW_SURFACE_LEVEL

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 41

Trench Representation

Classification Data

tag = ECC_ENGINEER_TRENCH

Property Value

meaning = EAC_MILITARY_FORCE_ALLEGIANCE

Linear Feature KK>o—

Property Value

meaning = EAC_ENGINEER_TRENCH_TY PE

Property Value

meaning = EAC_HEIGHT _ABOVE_SURFACE_LEVEL

Property Value
meaning = EAC_PASSAGE_BLOCKED

Property Value

meaning = EAC_DEPTH_BELOW_SURFACE_LEVEL

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 42

Step 3: Validation Criteria

« The mapping document provides transmittal
Instance diagrams that are valuable for e
. . . apping
validating the produced transmittal. Document

 This can be done through inspection, but that is
time consuming and problematic.

* Instead, a TCRS can be derived which defines
the exact requirements that must be met by the
production application. TCRS

« This is done by the TCRS_ Checker application
which compares a transmittal to the data
requirements specified in the TCRS document.

 Thus, in this step, the requirements are to be
captured as exit criteria for production.

« These requirements are defined in terms of the
DRM including EDCS & SRM.

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 43

Sample Transmittal Requirement #1

Domain

Point Feature

Classification Data
ECC TREE

Property Value
EAC WIDTH

Property Value
EAC STEM DIAMETER

Condition

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 44

Sample Transmittal Requirement #2

Domain

Point Feature

Classification Data
ECC TREE

Property Value
EAC WIDTH

Property Value
EAC STEM DIAMETER

Condition

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 45

Sample Transmittal Requirement #3

Domain

Point Feature

Classification Data
ECC TREE

Property Value
OR EAC WIDTH

Property Value
EAC STEM DIAMETER

Condition

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 46

Step 4: Creating a Transmittal

First: Learn basic calls of the SEDRIS API: Mostly E\,e
Data Set “ X”

insertion functionality
Second: Get SEDRIS SDK Mapping

Document

o Standard file directory structure

 Populated with the SEDRIS developer's source code | Sevel |
distribution and sample data sets Tranem
. . . . Production
Third: Create translating application TCRS Software
_J

« Developer has full control

« Choose optimal traversal of native data
« Access to native data

Finally: Create the STF

* Link application to core libraries

* Run Application

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 47

Step 4: Creating a Transmittal [2 of 2]

Native Data File(s)

Translating Application

SRM EDCS Transmittal Access

STF File(s)

- API Specification
- Reference Library
|:| Developer Code
|:| Binary Files

Copyright © 2004 SEDRIS™

How to Produce and Consume Transmittals 9 January 2004 48

Production Operations

Open a transmittal for writing
For each mapped SEDRIS object instance:

— Create (allocate) an object of the appropriate
type
— Put object data (field values)

— Set component, association, and link
relationships

Add data

—<Data Table> data

—<lmage> data

Free object memory & close the Transmittal

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 49

Production Considerations

e Determine if ITR should be used when producing
data
— Will you break the transmittals into smaller transmittals?
— Do you need incremental updates?
— Do you want to share someone else’s data?
— Do you want to create the data in a parallel fashion?

e To use ITR one must:
— Both the referencing object and the referenced object
being referenced must be published through the API.
« SE_PublishObject

— All transmittals that contain objects using ITR must be
assigned a URN name

« SE_SetURNName

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 50

Production Considerations [2 of 3]

Edit Operations

— Overwriting object fields
— Remove objects
— Remove object relationships

« Use as a post processing mechanism

Example:
— Models with has_uni ts set to false
— Producer in Pennsylvania, user in Florida

— Producer was made aware of issue, consumer
corrected Transmittal

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 51

Production Considerations [3 of 3]

* Object ID mechanism
— SE_GetIDStringForObject()
— SE_GetObjectFromIDString()

 Used IDs to retrieve objects already created
— Exploit the sharing mechanism

— Can be used to create an object without having to
specify all of its relationships

 Provides the mechanism to map native objects to
objects created through the API

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 52

Basics of a Translating Application

 Open Transmittal (mode=SE_AC _MODE_CREATE)

« Create <Transmittal Root> and set its fields

» Set the <Transmittal Root> as the root object

Create other objects

« Set field values and call SE_PutFields()

 If SE_PutFields() is not called will store default fields
 Make relationships between objects

« Add components to objects

 Add associations between objects

« Use Object IDs to retrieve objects already created
 Free objects when no longer needed

 Close Transmittal
— Handle APl validation
— Correct version, root object has been set

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 53

Step 5: Validate Transmittal

 Syntax Checker: checks ’ i
. Develop
DRM Compllance Transmittal
TCRS Production \
* Rules Checker: checks DRM Software

| >
constraints \ S
* Depth T /
— traverses the entire transmittal hierarchy

— reports statistics on types and numbers
of objects encountered

 Transmittal Browser: View the hierarchy of a
SEDRIS transmittal

« TCRS Checker:
— Validate STF with TCRS

— Return explicit problems

 Modify production software: iterate until STF is valid

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 54

Questions ?

* Questions on Producing?

« Documentation
— SEDRIS Technology Documentation Set
— Part 4: Technical Reference Set
— Volume 14: How to Produce SEDRIS Transmittals

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 55

Agenda: Consuming

Using SEDRIS
Translating

Consuming SEDRIS

— Native Analysis
—Mapping Document

— Extraction Capabilities
—Consuming Techniques

e TCRS
—Consumption Strategies

Consumption Challenge
Solution Path

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 56

Using SEDRIS

—
Common
Data
Madel
/s
7ferfa®
C—

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 57

Using SEDRIS [2 of 2]

e Importing into a native format
— STFto CTDB
— CCTT Correlated Databases

 Importing to add value to a transmittal
— SEE-IT

— Side-by-Side Viewer Native
Database
Format 1 Native
® B t h Database
O Format 2
Native
Database
_ “ Format 3
Native
Database
Format 4
~_
- Native
. Database
Native Format 5

Database
Format 6

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 58

SEDRIS Is about ...

e Representation of environmental data

— alanguage that *allows* articulation and expression of
environmental data

* Interchange of environmental data

— mechanisms to export and import data between different
systems that speak the representational aspect of SEDRIS

 With this in mind ...

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 59

Translating: the Language Analogy

« Meaning is context sensitive -- Sometimes more than one context.
« Humans can derive the context, hence phrases such as:

— “The TV show has jumped the shark”

— Parsing the words will not help, need the context
« Machines cannot derive context

— Data must be unambiguous

— Data must be loss-less

— Data must be specific and constant

* Likewise, the same problems appear when describing
the world to automated systems

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 60

Elements of Successful Translation

 Parse-able syntax:
— DRM

e Structural semantics - well-defined (or at least well-
understood) grammar in the (common/foreign)
language
— SEDRIS: DRM semantics

« Reasonable mapping of input language to output
language possibilities

— if the languages don’t match in expressive or
representation power, stop, we have a problem!

« Data’s organizational semantics

— e.g. Airport: point feature; areal feature; bag of
polygons; spatially-organized bags of polygons; bag
of “objects” ; spatially-organized bags of “ objects”, ...

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 61

Elements of Successful Translation [2 of 2]

 Context & understanding, or at least knowledge of
context

« “Translator's” command of both languages

— how good is the algorithm/logic for translation and how
well it’s implemented

 Use of “translation services”
— e.g. AP, filters, ...
« Post-translation value-adding

— e.g. turn polygons for use by z-buffer; undo SRF
translation

« Post-translation tailoring
— e.g. tune polygons for runtime processing

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 62

Needs & Expectations

Common Language - DRM
— Proper syntax

— Expressive grammar

— Dictionary of terms

— Meta-data for structural semantics, organizational
semantics, context semantics

Common Dictionary — EDCS

— Classification i.e. “things”

— Attributes — “ adverbs & adjectives”

Common Understanding — SRM

— Framework to convert data elements

Common Services — API _
— Access all “language” elements =
— Provide filtering (common & controllable)

— Provide SRM operations
— Common “value-adding” modules

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 63

Production and Consumption Process

Tasks-done by Data Provider

)
> Develop
i Transmittal
Mapping — _
PR Pt
SR
Map Native
Market Need, Date Model ¢ \
Use Cases, £ t
&EnvData | | SgpRis
Exchange e Vo
\NG‘_GdS/ Transmittal

Tasks done by Data Consumer

D)
Market Need, Verify A/
Use Cases, —p |Transmittal
& Env Data 4 » a LGRS
Exchange 2,0
9 |[——| sepris *
Needs To T

Native ' ‘
SOV Data Model \ Mapping Develop
App[j?;‘t'on / N—— Document | Transmittal Dat
Consumption| ata
i oy ’ Software »
Application *Y < Con t
Native Data __________/ 0 ,Cep

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 64

Consuming SEDRIS

o Step 1. Native Analysis
— What are your data requirements?
o Step 2: Mapping Document
— Map the DRM to your data requirements
« Step 3: Learn Implementation Details
— Extraction capabilities
— Detailed DRM knowledge
o Step 4: Determine consumption philosophy
— TCRS
« Step 5: Create consumption software
— Taking advantage of the common services
« Step 6: Expand consumption base
— Reorganizing software

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 65

Step 1: Native Analysis

 Analyze your data requirements

Market Need
* If you are a tool maker, what does your tool Use Cases.
I & Env Dat
require? cehange
e If you want to import into a native format: _Meeds
— What type of data does your native format
contain?

— Map your native data model to the SEDRIS DRM

e The SDRM is flexible (and the EDCS is complex)
— How much flexibility will you allow?

— How much complexity can you handle?

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 66

Step 2: Mapping Document

 Describe the native primitive data: What is the native
organization?

e Describe the translation from SEDRIS
to native data/format SRM DRM EDCS
— What data maps from
SEDRIS to native

\
Market Need
f)]
data model~ Use Cases,
— What data do you & E“k‘]’ Data Map) Mapping
. Exchange SEDRIS Document
?
need to derive” Needs To
— What algorithm will 5 ';'af\i/lved |
. ata iviode
be used to derive Application \)
native information? Y

)
— What data are you @
going to ignore? Native Data

 Anyrun time data requirements?
 Focus on primitive data

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 67

T e
3

]

o
i 3

Y/

-

\

Example: DRM to CTDB Mapping

« CTDB: Volume Models (buildings, obstacles)

— Stored in CTDB as a set of 3D vertices representing the roofline
of the volume.

— SAF “drops down” walls to the terrain for each pair of vertices.
— CTDB limits number of vertices to 15.

- DRM

— <Areal Feature>.
* With or without a <Property Value> to indicate the height above terrain
— <Union of Primitive Geometry>

* Classified with appropriate classification code
« What is appropriate — check the EDCS query tool

— <Point Feature>

* With or without <Property Value>to indicate height, width, and orientation
* With appropriate classification

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 68

DRM to CTDB Mapping [2 of 3]

 CTDB -
— Tree lines

« Stored as a linear set of points

Trunk Radius
Foliage Height
Fullness

Total Height

— Individual Trees

« Stored as tree line with only one point

- DRM

— <Point Feature> classified as a tree

— <Linear Feature> classified as a tree line
— <Union of Primitive Geometry> classified as a tree or tree line
— <Areal Feature> classified as a tree

Copyright © 2004 SEDRIS™

How to Produce and Consume Transmittals

Affects intervisibility and acts as a obstacle to vehicle movement

9 January 2004

69

DRM to CTDB Mapping [3 of 3]

* Tree Canopies

— CTDB
« Stored as a set of polygons representing the roof of the canopy

* The fullness of the canopy is also stored to represent the density of the
forest area

« Canopy polygons are used in intervisibility calculations

— DRM
» <Polygons> properly attributed
« <Areal Feature> properly attributed
« <Linear Feature> properly attributed

* Rallroads and Pipelines

— CTDB
« Both stored as linear sets of points
— DRM

* <Point Feature>
« <Geometry>
* What is the complete classification?

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 70

Step 3: Learn Implementation Details

« Extraction Capabilities
— Tree traversal
— Selection and filtering of objects
« Spatial boundaries
e Search filters
— Automatic navigation via branching criteria
— Retrieval of entire object hierarchy
— Automatic transformation of coordinates & colors
— Object Identification
— Advanced DRM Functionality
— ITR

« DRMrequirements

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 71

Basic Extraction

Description SEDRIS API

Open a Transmittal SE OpenTransm ttal ByFil e

Get the root object SE_Cet Root (hj ect

Set the current SRF Parameters SE Set SRFPar anet er s

Set the Color Model SE_Set Col or Model

Create a Search Boundary SE Creat eSpati al Sear chBoundary
Create a Search Filter SE CreateSearchFilter
Create an Iterator SE InitializeConponentlterator

Retrieve an object SE Get Next (bj ect

Access and process object attributes

Free the object SE Free(hj ect
Freethe lterator SE Freelterator
Free the Search Filter SE FreeSearchFilter

Repeat for as many different Search Filters as desired

Free the Search Boundary SE _FreeSpati al Sear chBoundary
Close the Transmittal SE G oseTransm tt al

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 72

Detailled DRM Knowledge

* Primitive’ objects
— Features
« <Point Features>, <Linear Features>, <Areal Features>

— Geometry
e <Camera Points>

« <Points>, <Lines>, <Arcs>, <Ellipses>, <Elliptic
Cylinders>

 <Polygons>, <Finite Element Meshes>
e <Light Sources>
e <Sounds>
* <Property Tables>, <Property Grids>
 <Images>

— Model Instances

 Modifiers, Attributes, & Components

— <Location>

— <Color>

— Classification

— Transformation

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 73

Detailled DRM Knowledge [2 of 3]

« Containers and Organizers
— <Transmittal Root> and <Environment Root>

— Libraries

« <Model>, <Image>, <Data Table>, <Property Set>,

<Colour Table>, <Symbol>, <Sound>

— Feature & Geometry Hierarchies

* Classification (ECC)

 Scale (ESC)

* Spatial Index

* Perimeter

« Time

e Level of Detail (LoD)

e Quad Tree & Oct Tree

e Alternate Hierarchy

* Separating Plane (G)

 Continuous LoD (G)

 Animation (G)

* Union

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 74

Detailled DRM Knowledge [3 of 3]

Transmittal Root Primitives
Attributes
Containers
Model Library Image Library Point of Contact Description Environment Root
I_|
Model Image

ety

Level of Detail Related Geometry

Classification Related Features

Union of
Primitive Geometry
Union of Union of
Feature Feature Primitive Geometry Primitive Geometry
Classification Classification
Polygon
AP AC AL]]
Union of Union of Polygon
Features Features e
H Polygon
PO i ni=maaikas I PO k= e I
Point Features Point Features

Classification Color Vertex

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 75

Step 4: Consumption Philosophy

« The mechanics of data extraction is the easy part ...

By design, the SEDRIS APl tackles ease-of-use issues
— Filtering is great, but what do you want to filter on/for?

 Before you start, you need a plan

— In particular, you need to be prepared to handle:
* Your ideal transmittal
— The one that you’d build, if you could ...
* Your acceptable transmittal

— The one that you could imagine someone building ...
* Your worst-case transmittal

— The one you can’t imagine that anyone in their right mind ...
— More transmittals than you might like will be non-ideal
* You'll need a plan ... because you might not get what you want

« Be Prepared! Do your systems analysis, mapping, and design

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 76

Step 4: Consumption Philosophy [2 of 4]

 Design and implement a data consumption strategy
which focuses on a narrow band of acceptable
transmittal data models?

— Reduces cost, but limits flexibility
 E.g.,can laccept elevation grids instead of polygons?

— May not be scalable to other “ nonstandard” data providers
 E.g.,use NGA DTED instead of a prepared TIN?

 Design and implement a data consumption strategy
which accepts a wider range of transmittal data
models?
— Increases early costs, but enhances flexibility
— Should be scalable, given good design choices

 Goal: Design for the future, implement on the pay-as-
you-go plan

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 77

Step 4: Consumption Philosophy [3 of 4]

Polygon

Classification Color Vertex

« What are you consuming?
— Primitives with attributes/modifiers

e Find the least common denominator
— |In SEDRIS terms

* Removes the organization issue

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 78

Step 4: Consumption Philosophy [4 of 4]

« Transmittal Content Requirements Specification
(TCRS)
— Specification of what your software will minimally handle

— Provides different DRM representations that you will and
will not handle

— Defines the requirements of a Transmittal
— Allows you to evaluate Transmittal content
— NOT a Content Agreement

— Flows from the Mapping Document

« TCRS Example

— CATT CDB
— STFto CTDB

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 79

CATT TCRS Example [1 of 4]

« Section 3.1: Tree/Bush Models

— Structure: Model & Feature Model & Union of Features = a single Point Feature
& Feature Node & Location

— Requirements:

A <Classification Data> component identifying model as a tree or bush:
EDCS _CC _TREE or EDCS CC_SCRUB_OR BRUSH OR BUSH

A <Property Value> component specifying the height from ground to top of
foliage: attribute_code = EDCS_AC HEIGHT_ABOVE_SURFACE_LEVEL in
meters and Float 32

A <Property Value> component specifying the trunk diameter:
EDCS _AC _STEM_DIAMETER_SIZE in meters and Float 32

A <Property Value> component specifying the foliage diameter: attribute_code =
EDCS AC LENGTH_OR_DIAMETER, in meters and Float 32

A <Property Value> component specifying the foliage transmissivity between 0.0
and 1.0: attribute code = EDCS_AC_TRANSMISSIVITY, in percent and Float 32

A <Property Value> component specifying the tree/bush type: attribute code =
EDCS _AC VEGETATION_CHARACTERISTIC, an enumerator of Unsigned Int 16

A <Property Value> component specifying the distance from the ground to the
foliage: attribute code = EDCS_AC_TREE_CANOPY_HEIGHT _LOWEST_BRANCH,
in meters and Float 32

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 80

CATT TCRS Example [2 of 4]

e Section 3.1: Tree/Bush Models

Model

Feature Model

Union of Features

Point Feature

Feature Node

Location

Copyright © 2004 SEDRIS™

Property Value: 16.7 M
EDCS_AC_HEIGHT_ABOVE_SURFACE LEVEL

Property Value: 0.7 M
EDCS_AC_STEM _DIAMETER_SIZE

Property Value: 7.6 M
EDCS_AC LENGTH_OR_DIAMETER

Property Value: 0.5
EDCS_AC_TRANSMISSIVITY

Property Value: SE_PROP_VAL_VEG_OAK

EDCS_AC_ VEGETATION_CHARACTERISTIC
DESIRED <'

Property Value: 2.3 M

Classification Data:
EDCS CC TREE

EDCS_AC_TREE_CANOPY_HEIGHT LOWEST BRANCH

How to Produce and Consume Transmittals 9 January 2004 81

CATT TCRS Example [3 of 4]

e Section 4. Terrain Skin

A continuous surface covering the extents of the database

CATT stores the data as a two dimensional data table of
elevation values

SEDRIS supports the concept of a terrain skin by allowing
items to be identified as “terrain”. Grids and other SEDRIS

objects can be identified as “terrain” through the use of
ECCs

2 SEDRIS constructs
« <Polygons> classified as terrain polygons

» <Property Grids> with elevation and diagonalization
Issues

— So which did CATT choose?

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 82

CATT TCRS Example [4 of 4]

- BOTH

— CATT will consume a <Property Grid>

— Using a polygonal representation <Polygons> will have:

An ECC of EDCS_CC_TERRAIN

The SE_TERRAIN_POLYGON value set within the polygon_flags field
of the Polygon

If the <Polygon>is a “cut” polygon, the SE_CUT_POLYGON value set
within the polygon_flags field

If the <Polygon>is a “raised” or “fill” polygon, the
SET_RAISED POLYGON value set with the polygon_flags field

A <Property Value> of
EDCS_AC _SURFACE_TRAFFICABILITY_GROUP_CCTT

— For polygonal representation will include an empty <Property
Grid>

Copyright © 2004 SEDRIS™

How to Produce and Consume Transmittals 9 January 2004 83

Example: STFto CTDB TCRS

 Limit terrain to:

@ 4 Property Qrid: ECC TEREAIN ELEVATION PEOPERTY SET

Table Property Description: BEAC GREID DIACSORALIZAT ICM

Table Property Description: EAC TEREAIM TREAFFICABILITY COARSE
Table Property Description: EAC SURFACZE MATERLAL TYPE

Table Property Description: EAC S50IL TYPE

Table Property Description: EAC SOIL WET MESS

i@y Classification Data: ECC_TERRAIMN_ELEVATION_PROPERTY_SET

e OR:

@ . § Pohlhygon: ECC TERRAIMN

@y Classification Data: ECC_TERREAIM
Property value: EAC TERREAIN TRAFFICABILITY COARSE
Froperty Value: BEAC SURFACE MATERLAL TYFPE
Property walue: EACZ 5OIL TYPE
Property value: EAC S0OIL WET MESS

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 84

STF to CTDB TCRS [2 of 4]

* Buildings shall be:

¢ &8 Areal Feature: ECC_BUILDIMNG
i Classification Data: ECC_BUILDIMG
& FProperty’alue: BAC HEIGHT ABOYE SURFACE LEVEL

e Roads and rivers:

@ <A Linear Feature: ECC_RIVER
i@y Classification Data: ECC_RINER
& FProperty Walue: EAC WIDTH

@ <) Linear Feature: ECC_ROAD
W&y Classification Data: ECC_ROAD
& FPropertyvalue: EAC WIDTH

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 85

STF to CTDB TCRS [3 of 4]

e Trees & tree lines:

& <2h Linear Feature: ECC_TEEE
¥ Classification Data: ECC_TREE
@& FPropertywvalue: EAC HEIGHT ABOWE SUREFACE LEWEL
@ Fropertwwalue: EAC BEUSH DERSITY
& Fropertwwalue: ESC MEAN 5TEM DLARMET ERE
& Propertwwalue: EAC TREE CAROPY BOTTOM HEICGHT
@ 2 Point Feature: ECC_TREE
&y Classification Data: ECC_TREE
& FPropertyw »alue: EAC HEIGHT ABOWE SIUEFACZE LEWVEL
& Fropertyswalue: EAC BRUSH DEMRSITY
a Fropertywy walue: EACZ MEAR STEM DLAMET ER
@ Propertwalue:, EAC TEEE CARMNOPY BOTTOM HEICGHT

 Tree Canopies

@ &k Areal Feature: ECC_TREED TRACT
iy Classification Data: ECC_TREED _TRACT
@ Propertytalue: EAC BEUSH DENAITY

@ 4 Polygon: ECC TREED TRACT
& Classification Data: ECC_TREED _TRACT

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004

86

. i
Y
/- i
R

|

a5
B

e

STF to CTDB TCRS [4 of 4]

« Railroad, power lines, & pipeline

@ <A Linear Feature: ECC_RAILROAD
W@y Classification Data: ECC_RAILROAD
@ <44 Linear Feature: ECC_POWER_TRAMNSMISSION _LIME

i@y Classification Data: ECC_POWER_TREAMSMISSION_LINE

@ &A Linear Feature: ECC_FIPELINE
@y Classification Data: ECC_PIPELIME

 Soil information

¢ &k Areal Feature; ECC_GROUMD_SURFACE_ELEMENT
&y Classification Data; ECC_GROUMD _SURFACE_ELEMEMT

Copyright © 2004 SEDRIS™

Fropery Walue
Froperty value
Fropery Walue
Fropersy Walue

- BACZ TERRAIN TRAFFICABILITY COARSE
. BAC SURFACZE MATERIAL TYPE

- BAC 50IL TYPE

C BEAC 50IL WETMESS

How to Produce and Consume Transmittals

9 January 2004

87

Step 5: Consumption Software

« Must reflect (and implement) the input to —
output mapping requirements Develop
Transmittal
* Must rely on the input and the output Consumption

languages’ syntax and semantics (as opposed |\)
to implied semantics)

« Must not make assumptions that are not
supported in the input or the output language

 Must not hard-wire extra-transmittal context

e Should use the common services to fullest
extent

 Must be able (and willing) to process enough
data to extract the information it needs

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004

88

Consumption/translation strategies

 Implement a method for each class in SEDRIS
(e.g., iIf a SIRG Is found, do <action>)

« Use filters (API) to look for desired data

« Configure extraction approach based on syntax
and/or semantics data extracted from transmittal

or pre-processing of transmittal
« Combination of the above

 Use meta-data and summary information

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 89

Extraction Techniques

« If you must transform SRFs or color systems, let the APl do it

— It’s probably more efficient and more exact than what you may be
using currently

« Extract each <Library>, or the <Environment Root>, first?
— Get ‘em all, even if not used vs. Get ‘em as they are referenced
 Four basic <Environment Root> extraction strategies
— Get it all, everywhere
* Depth-first traversal of entire transmittal
 “walk the tree” and examine everything at application-level
— Get it all, somewhere
— Get some of it, everywhere
— Get some of it, somewhere
 Choice driven by application-requirements

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 90

s
5 o - iy
i .. i 1

[s e
TR

/

Making the APl work for you

extern SE_STATUS CODE_ENUM
SE InitializeConponentlterator(

SE OBJECT start_object,

SE_SEARCH BOUNDARY boundary,

SE_SEARCH FI LTER filter,

SE_BOOLEAN directly attach_tabl e_conponents,
SE BOOLEAN process_i nheritance,

SE_BOOLEAN transform.| ocati ons,

SE BOCOLEAN fol | ow nodel instances,
SE_BOCOLEAN eval uate_static_control _|inks,

const SE H ERARCHY_ SELECT_ PARAMETERS *sel ect _paraneters_ptr,
const SE H ERARCHY ORDER PARAMETERS *traversal order paraneters ptr,

SE_GENERAL_TRAVERSAL_ENUM general _traversal _pattern,
SE | TR_TRAVERSAL ENUM inter _transmttal _referencing traversal,
SE | TERATOR *iterator_out _ptr);

« Use as much of the advanced features as you need!

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 91

Making the APl work for you [2 of 13]

Retrieve based on locations

Search Type

— Point: The center point of the object tested
— Bounding Box: A box around the object is tested
— Exact: The geometry of the object is tested

Inclusion

— Full Inclusion: Objects must be fully contained within the search
bounds

— Partial Inclusion: Objects must only be partially contained
Search box

* Define a min and max point in the SRM of the <Environment Root>
Search dimensionality

— 2-Dor 3-D

— 2-D allows infinite height/depth

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 92

Making the APl work for you [3 of 13]

 Limiting the search through the search filters

« Get only:
— Objects of specific DRM classes
— Objects that have associate objects
— Objects that have associated objects of specific DRM class
— Objects with components of specific DRM classes
— Objects with components with specific field values
— Objects with specific field values
— Objects with specific field ranges
— Objects within X levels down the tree
— Objects that meet my specified function
— Combination of these items

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 93

Making the APl work for you [4 of 13]

e directly attach tabl e conponents

— When set to SE_TRUE, indexed components are replaced with
directly attached instances (right example)

— Examples: <Attribute Set Index> objects, <Color Index>, ...
« Letthe APIdo it
— Simplifies consumption

— Work with primitives

Union of Primitive Geometry

Polygon

Property Set Index

Polygon

— Propert Set Index
— Vertex 1 Location
—T1 Vertex [Location
—1 Vertex [Location
Copyright © 2004 SEDRIS™

—1 Vertex [Location
— Vertex — Location
—1 Vertex [Location

Union of Primitive Geometry

Polygon

Classification Data

Rendering Priority

Polygon

Image Mapping Func

Vertex [Location
Vertex [— Location
Vertex — Location

Classification Data

Rendering Priority

Image Mapping Func

How to Produce and Consume Transmittals

Vertex — Location
- Vertex — Location
Vertex — Location

9 January 2004

94

Making the APl work for you [5 of 13]

e process_inheritance

aggregation tree

— Removes interpretation
— Correctly flows to the primitives
— Simplifies the context issue

Union of Geometry Hierarchy

Union of

Primitive Geometry

GRAY Union of
Primitive Geometry

Polygon

Polygon

Union of

Primitive Geometry

— If set to SE_TRUE, returns inherited objects found higher in the

GREEN

Union of
Primitive Geometry

GREEN

Polygon Polygon

Copyright © 2004 SEDRIS™

Polygon

How to Produce and Consume Transmittals

Polygon Polygon

GREEN GREEN
Polygon Polygon Polygon
GRAY GRAY GRAY

9 January 2004 95

Making the APl work for you [6 of 13]

Simplifying Model Instances

Transmittal Root
T

Follow Model Instances [

— Attaches the model as a component Model Library
of the Model Instances

— Instantiates all data that the

Model

<Model> contains

Geometry Model

Transform Locations

—

— LSR Model locations instanced in oriimon
rimitive Geometry
the real world SRF |
Evaluate Static Control Links Polylgon
— Will automatically calculate the field __| I |
values of <Model> data Vezltex Ver:x Ve;tex
Basic consumption strategies: — — —
— Use API to instance models Location 3D | | Location 3D || Location 3D

— Extract the <Model Library> before
extracting <Environment Root>(s)

— Application can transform models

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals

]
Environment Root

Geometry Model Instance

World Transformation

TM Location 3D

9 January 2004 96

Making the APl work for you [7 of 13]

Transmittal Root

Model Library Environment Root

Model

Geometry Model Instance

— |

Geometry Model
y World Transformation Geometry Model
. .L'Jmon of UTM Location 3D Union of
Primitive Geometry I
Primitive Geometry

P0|ylgon Polygon
| I | [|| |
Verte

Ve;tex |_|X Ve;tex Vertex Vertex Vertex
LSR LSR LSR

_ . ; LSR LSR LSR

Location 3D i .
Location 3D Location 3D Location 3D Location 3D Location 3D

e follow nodel instances set to SE TRUE

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 97

Making the APl work for you [8 of 13]

Transmittal Root

Model Library Environment Root

Model

Geometry Model Instance

— |

Geometry Model .
y World Transformation Geometry Model
. .L.Jmon of UTM Location 3D Union of
Primitive Geometry N
Primitive Geometry

P0|y|90” Polygon
| [| | || |
Verte
Ve:ltex |_| X Ve;tex Vertex Vertex Vertex
LSR LSR LSR
L n 3D .
Location 3D Location 3D ocation 3 Location 3D Location 3D Location 3D

e follow nodel instances set to SE TRUE
e transformlocations set to SE TRUE

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 98

Making the APl work for you [9 of 13]

Classification Related
Features

Trees Roads Rivers
Union of Features Union of Features Union of Features

|
| | l | | l| | ' [|

Point Linear Areal Point Linear Areal Point Linear Areal
POt e Areal POt mialss real POt Tmeal Areal |
I—d I I—rtm—al; I t I—I—m'p—al; | I

e Hierarchy selection & filtering
— Classification (ECC)
— Attribute (EAC)
— Spatial Index
— Time
— Level of Detail (LoD)
— Quad Tree & Oct Tree
— Separating Plane (G)

* Provides the capability to avoid paths in a hierarchy tree

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 99

Making the APl work for you [10 of 13]

e Hierarchy Ordering

* Will return components in descending or ascending
order

« Example:

— Ascending: Red, Green, Blue
— Descending: Blue, Green, Blue

Level of Detail Related Geometry

5000+ 1001 - 5000 0 - 1000
Union of Primitive Union of Primitive Union of Primitive
Geometry Geometry Geometry

Polygon Polygon Polygon
| FOlygon h | POTygon h | FOlygon h

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 100

Making the APl work for you [11 of 13]

« Hierarchy Ordering example: Spatially Indexed

« Ascending: G,H,I,D,E,F,A,B,C
« Descending: C,B,A,F,E,D,|,H, G

A B C
D E F
960 M G H I
e
Origin >
960 M

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 101

Making the APl work for you [12 of 13]

A

« Depth first
- F,G,BIM,N,H, I,J,C,K,LE
* Breadth first
- B,C,E,FG,H,1,J,K,L,M,N

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 102

Making the APl work for you [13 of 13]

Transmittal 2

e 1tr_traversal order

— SE_ITR_BHVR_IGNORE
e Won't see B

— SE_ITR_BHVR_RESOLVE
* Will return B

— SE_ITR_BHVR_REPORT
 Will say thereis aB

Copyright © 2004 SEDRIS™

Should always resolve
— APl will do the work
— Retrieve all the data

How to Produce and Consume Transmittals

9 January 2004

Step 6: Expand Consumption Base

« Goal: Design for the future, implement on the
pay-as-you-go plan

 You can consume all possible SEDRIS Transmittals.
— But is that the best use of resources?
— In other words, what would happen if everyone did that?

— Duplicated Effort
— Duplicated Code h@ ‘

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 104

Step 6: Expand Consumption Base [2 of 3]

* More efficient consumption

e Consumer focus
— Focus on SEDRIS to native format
— Not focused on consuming all SEDRIS Transmittals

SO0, how does a consumer expand his
consumption base?

o —@% ¢

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 105

Step 6: Expand Consumption Base [3 of 3]

« Recompiler
— Allows incremental development

— Provides a clear mechanism for validation of
transmittal

— Allows for reuse of software components

— Allows for development in SEDRIS components
e Larger base of users
e Larger code base
e Larger market place

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004

106

Case Study

« STF2 CTDB
— Published TCRS
— Multiple passes of Transmittal

— Allows users the capability to define which classification
codes to use, specified at run time

— Problems if encounters classification codes not defined at run
time

— Process libraries at one time and stores relevant information

— Allows APIto handle all inheritance issues

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 107

Case Study [2 of 2]

« CCTT SAF
— Published CATT CDB TCRS
— 2 Data providers: E&S & LMIS

— Provided an application to re-organize STF into consumable
organization

— Must classify features with specific attribute code and classification
codes

* i.e., atree shall have the following classification code with the
following attribute codes

— Strategy:
e Limit consuming software to a closely defined STF organization

* Provide application to create the closely defined STF organization
from other STF organizations

* Insulate the consumption software to deal with a subset of DRM
organizations

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 108

T e
3

]

o
i 3

Y/

-

\

Current Solution

 Bridging the gap

— Each step is a multiplier
« TCRS XML encoding /

— Allows for the clear specification of TCRS
requirements Checker >
— Allows for publishing requirements ¢ . STE
e TCRS_ Checker Bﬁ—‘
— Evaluates a transmittal’s compliance
with a TCRS v
: : : NO Rework
— Provides failure instances Application,
— Gating point for consumption —*| Recompiler,
application Or STF?
— Provides consumer’s flexibility on next VES
step Consumption
— Provides result’s as to how close the Application

STF comes to meeting your TCRS

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 109

Final Solution Path

« Transmittal Transformer
— Using an input TCRS and output TCRS,

transforms an STF to meet output TCRS
* Incremental Step \ l
— Recompilers that take a TCRS compliant
STF and transform it into an STF compliant
to another TCRS
— Example: transforming an STF compliant / Ej

with the CCTT CDB TCRS to an STF

compliant with the STF to CTDB TCRS = Ej
« Next Steps /
— Graphical TCRS \Ej
builders
— Transmittal analyzer /
 Determine TCRS \ Ej

of a transmittal

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 110

Questions ?

 Questions on Consuming?

« Documentation
— SEDRIS Technology Documentation Set
— Part 4: Technical Reference Set
— Volume 15: How to Consume SEDRIS Transmittals

Copyright © 2004 SEDRIS™ How to Produce and Consume Transmittals 9 January 2004 111

