
SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

1

User’s Manual
for

SRM Orientation & Vector Transformations

Version 2.0, 18 November 2009

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

2

Table of Contents
1 Introduction ... 5
2 Scope ... 6
3 API Overview ... 7

3.1 SRF Classes .. 7
3.1.1 BaseSRF .. 7
3.1.2 BaseSRF_3D ... 7
3.1.3 SRF_Celestiocentric ... 9
3.1.4 BaseSRF_WithEllipsoidalHeight ... 9
3.1.5 SRF_Celestiodetic... 9
3.1.6 BaseSRF_WithTangentPlaneSurface ... 10
3.1.7 SRF_LocalTangentSpaceEuclidean .. 10
3.1.8 SRF_LococentricEuclidean3D ... 10

3.2 Orientation Classes ... 10
3.2.1 Orientation .. 10
3.2.2 OrientationAxisAngle ... 11
3.2.3 OrientationEulerAnglesZXZ... 11
3.2.4 OrientationTaitBryanAngles ... 11
3.2.5 OrientationMatrix ... 11
3.2.6 OrientationQuaternion .. 11

4 Example Framework ... 12
4.1 Global SRFs .. 12

4.1.1 Geodetic WGS 1984 SRF ... 13
4.1.2 Geocentric WGS 1984 SRF .. 14

4.2 Local SRFs .. 14
4.2.1 Test/Training-Range-Based SRFs .. 14
4.2.2 Platform-Based SRFs .. 17
4.2.3 Component-Based SRFs ... 21

5 Position ... 24
5.1 Concept ... 24
5.2 Transformation procedure ... 24
5.3 Examples ... 25

5.3.1 Transform Between Range SRFs .. 25
5.3.2 Transform From Range to Geocentric .. 26
5.3.3 Transform From Range to Geodetic ... 27
5.3.4 Transform From Geodetic to Geocentric .. 27
5.3.5 Transform From Geodetic to Range ... 28

6 Orientation .. 30
6.1 Concept ... 30
6.2 Representations ... 30

6.2.1 Axis-Angle Representation ... 30
6.2.2 Euler Angle Z-X-Z Representation ... 32
6.2.3 Tait-Bryan Angle Representation ... 34
6.2.4 3x3 Rotation Matrix Representation ... 36
6.2.5 Quaternion Representation.. 37
6.2.6 Orientation Representation Access ... 38

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

3

6.3 Transformation procedure ... 39
6.3.1 Transform Orientation .. 39
6.3.2 Transform Orientation with Common Origin ... 40

6.4 Examples ... 40
6.4.1 Transform Between Range SRFs .. 40
6.4.2 Transform From Range to Geocentric .. 42
6.4.3 Transform From Range to Geodetic ... 44
6.4.4 Transform From Geodetic to Geocentric .. 45
6.4.5 Transform From Geodetic to Range ... 46

7 Vector Quantities .. 48
7.1 Concepts .. 48

7.1.1 Linear Velocity ... 48
7.1.2 Angular Velocity ... 49
7.1.3 Linear Acceleration ... 50
7.1.4 Angular Acceleration .. 51

7.2 Representation... 52
7.3 Transformation Procedure .. 52

7.3.1 Transform Vector .. 52
7.3.2 Transform Vector with Common Origin .. 53
7.3.3 Transform Vector in Body Frame ... 53
7.3.4 Transform Vector in Body Frame with Common Origin 54

7.4 Examples ... 55
7.4.1 Transform Between Range SRFs .. 55
7.4.2 Transform From Range to Geocentric .. 57
7.4.3 Transform From Range to Geodetic ... 59
7.4.4 Transform From Geodetic to Geocentric .. 61
7.4.5 Transform From Aircraft Body Frame to Range 1 ... 62
7.4.6 Transform From Aircraft Body Frame to Range 2 ... 65

List of Figures
Figure 3-1. Subset of SRM Classes & Methods .. 8
Figure 4-1. Example Framework ... 12
Figure 4-2. Global Geodetic and Geocentric SRFs ... 13
Figure 4-3. Local Tangent Space Euclidean SRF .. 15
Figure 4-4. Aircraft Spatial Reference Frame .. 17
Figure 4-5. Tank Spatial Reference Frame .. 19
Figure 4-6. Tank Turret Spatial Reference Frame ... 20
Figure 4-7. Tank Gun Spatial Reference Frame .. 22
Figure 5-1. Position. ... 24
Figure 6-1. Axis-Angle Representation of Orientation.. 31
Figure 6-2. Euler Angle Z-X-Z Representation of Orientation ... 33
Figure 6-3. Tait-Bryan Angle Representation of Orientation .. 35
Figure 6-4. Orientation Transformation from Range 1 to Range 2 ... 41
Figure 7-1. Linear Velocity.. 48
Figure 7-2. Angular Velocity ... 49
Figure 7-3. Linear Acceleration ... 50

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

4

Figure 7-4. Angular Acceleration .. 51
Figure 7-5. Vector Transformation from Range 1 to Range 2 ... 55

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

5

1 Introduction
This user’s manual describes how to use the Spatial Reference Model (SRM) software
implementation to transform entity state information between different spatial reference frames.
It provides an integrated example framework that is used to illustrate how software developers
can use the SRM implementation to perform these transformation operations.

The remainder of this user’s manual is organized as follows:

• Section 2 summarizes the scope of the SRM software addressed in this manual.
• Section 3 provides an overview of the relevant parts of the SRM Application Program

Interface (API).
• Section 4 describes the framework used for the examples in this user’s manual.
• Section 5 discusses the transformation of position information.
• Section 6 discusses the transformation of orientation information.
• Section 7 discusses the transformation of vector quantities, including linear velocity,

angular velocity, linear acceleration, and angular acceleration information.

For background and general information on the SRM, please review the SRM standard (ISO/IEC
18026:2006), available from the SEDRIS web site at http://standards.sedris.org. This user’s
manual assumes the reader is familiar with the fundamental concepts and terminology of the
SRM. In addition, familiarity with, and review of, the documentation contained within the SRM
implementation software development kit (SDK) is recommended. Fundamental background
information on the concept of orientation, the various forms in which orientation information can
be represented, and the relationships between orientation, direction, and vector quantities is
provided in the document “Technical Concepts: Orientation, Rotation, Velocity, and
Acceleration and the SRM”, which can be found at http://www.sedris.org/srm_desc.htm#papers.

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

6

2 Scope
The SRM software implementation provides facilities to transform entity state information for
both particles and rigid bodies from one spatial reference frame (SRF) to another. The SRM
implementation performs static conversions, but does not perform the kinematics calculations
required to simulate the movements of the entities over time.

The types of entity state information that may be transformed using the SRM software
implementation include:

• Position – the location of a particle, or of the center of mass of a rigid body, with respect
to a specific spatial reference frame,

• Orientation – in general, the relationship between the axes of two linear spatial reference
frames; in particular, the relationship between the coordinate axes of a rigid body, and the
coordinate axes of a local tangent frame of a given world spatial reference frame,

• Velocity – the instantaneous rate of change of displacement (i.e., change of position) of a
particle or rigid body,

• Angular Velocity – the instantaneous rate of rotation of a point or rigid body about an
axis,

• Acceleration – the instantaneous rate of change of velocity of a particle or rigid body, and
• Angular Acceleration – the instantaneous rate of change of angular velocity of a point or

rigid body.

Orientation may be represented in several ways, including axis-angle pairs, Euler angles, Tait-
Bryan angles, 3x3 rotation matrices, and quaternions. Velocity, angular velocity, acceleration,
and angular acceleration may be represented as vectors.

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

7

3 API Overview
This section provides a brief overview of the elements of the SRM API that are referred to in this
user’s manual. More complete and detailed information is contained in the SRM API
documentation. Readers who are already familiar with the SRM API may prefer to skip this
section.

The examples in this user’s manual use the C++ language binding of the SRM API. Note that,
for brevity, a number of elements that would be required in compilable source code are omitted.
For example, the SRM namespace is assumed. Also, exception handling is ignored, although
production code should always use try/catch blocks.

This user’s manual makes use of a hierarchical collection of object classes and their associated
methods. These are briefly summarized below.

Figure 3-1 summarizes the classes and methods in the portion of the SRM API class hierarchy
that is referred to in this user’s manual. As shown in the figure, these classes are organized into
two hierarchies. The spatial reference frame (SRF) class hierarchy is shown on the left side of
the figure. The orientation class hierarchy is shown on the right side of the figure.

3.1 SRF Classes
The SRF class hierarchy includes classes that represent various types of spatial reference frames.
Note that Figure 3-1 shows only the subset of the classes defined by the SRM API that are
referenced within this user’s manual. See the SRM API documentation for a more
comprehensive description of the SRF class hierarchy.

3.1.1 BaseSRF
The class BaseSRF is the abstract base class for all SRF classes. It provides several common
methods to return coded values identifying the SRF and its associated Object Reference Model
(ORM), Reference Transformation (RT), and Coordinate System (CS).

3.1.2 BaseSRF_3D
The class BaseSRF_3D is the abstract base class for all 3D SRF classes. It is a subclass of
BaseSRF. It defines the following methods that are referenced within this user’s manual:

1) createCoordinate3D,
2) getCoordinate3DValues,
3) freeCoordinate3D,
4) changeCoordinate3DSRF,
5) createDirection,
6) freeDirection,
7) createLococentricEuclidean3DSRF.
8) transformOrientation,
9) transformOrientationCommonOrigin,
10) transformVector,
11) transformVectorCommonOrigin,

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

8

 class SRM 4.4 OV API
BaseSRF

BaseSRF_3D

+ createCoordinate3D() : Coord3D *
+ getCoordinate3DValues() : void
+ freeCoordinate3D() : void
+ changeCoordinate3DSRF() : SRM_Coordinate_Valid_Region
+ createDirection() : Direction *
+ freeDirection() : void
+ createLococentricEuclidean3DSRF() : SRF_LococentricEuclidean3D *
+ transformOrientation() : void
+ transformOrientationCommonOrigin() : SRM_Coordinate_Valid_Region
+ transformVector() : void
+ transformVectorCommonOrigin() : SRM_Coordinate_Valid_Region
+ transformVectorInBodyFrame() : void
+ transformVectorInBodyFrameCommonOrigin() : SRM_Coordinate_Valid_Region

SRF_LococentricEuclidean3D

+ create() : SRF_LococentricEuclidean3D *

BaseSRF_WithTangentPlaneSurface

SRF_LocalTangentSpaceEuclidean

+ create() : SRF_LocalTangentSpaceEuclidean *

Orientation

+ getMatrix3x3() : SRM_Matrix_3x3
+ getAxisAngle() : SRM_Axis_Angle_Params
+ getEulerAnglesZXZ() : SRM_Euler_Angles_ZXZ_Params
+ getTaitBryanAngles() : SRM_Tait_Bryan_Angles_Params
+ getQuaternion() : SRM_Quaternion_Params
+ setMatrix3x3() : void
+ setAxisAngle() : void
+ setEulerAnglesZXZ() : void
+ setTaitBryanAngles() : void
+ setQuaternion() : void
+ transformVector() : SRM_Vector_3D

OrientationAxisAngle

+ getAxisAngle() : SRM_Axis_Angle_Params
+ setAxisAngle() : void
+ compose() : OrientationAxisAngle

OrientationEulerAnglesZXZ

+ getEulerAnglesZXZ() : SRM_Euler_Angles_ZXZ_Params
+ setEulerAnglesZXZ() : void
+ compose() : OrientationEulerAnglesZXZ

OrientationMatrix

+ getMatrix3x3() : SRM_Matrix_3x3
+ setMatrix3x3() : void
+ compose() : OrientationMatrix

OrientationQuaternion

+ getQuaternion() : SRM_Quaternion_Params
+ setQuaternion() : void
+ compose() : OrientationQuaternion

OrientationTaitBryanAngles

+ getTaitBryanAngles() : SRM_Tait_Bryan_Angles_Params
+ setTaitBryanAngles() : void
+ compose() : OrientationTaitBryanAngles

SRF_Celestiodetic

+ create() : SRF_Celestiodetic

SRF_Celestiocentric

+ create() : SRF_Celestiocentric

BaseSRF_WithEllipsoidalHeight

Figure 3-1. Subset of SRM Classes & Methods

12) transformVectorInBodyFrame, and
13) transformVectorInBodyFrameCommonOrigin.

It also defines a number of other methods. See the SRM API documentation for a complete
description of these.

The methods createCoordinate3D, getCoordinate3DValues, freeCoordinate3D, and
changeCoordinate3DSRF are used in dealing with position information. The method
createCoordinate3D creates a Coord3D object from three coordinate component values that are
specified as input parameters. The method getCoordinate3DValues outputs the three
coordinate component values of a specified Coord3D object. The method
changeCoordinate3DSRF transforms a specified Coord3D object from a specified source SRF to
the target SRF. The method freeCoordinate3D releases a Coord3D object.

The methods createDirection, and freeDirection are used in dealing with direction
information. The method createDirection creates a Direction object from a reference
Coord3D object and a 3D vector that are specified as input parameters. The method
freeDirection releases a Direction object.

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

9

The method createLococentricEuclidean3DSRF creates a SRF_LococentricEuclidean3D
SRF relative to a given SRF, with its origin at a specified lococentre coordinate and its
orientation determined by specified primary and secondary axis directions. It is used in the
examples below to create platform body and component-based SRFs (see sections 4.2.2 and
4.2.3).

The methods transformOrientation and transformOrientationCommonOrigin are used in
dealing with orientation information (see section 6). The method transformOrientation
transforms a specified Orientation object with respect to a local tangent frame associated with
a specified source reference coordinate in the source SRF, to the local tangent frame associated
with the specified target reference coordinate in the target SRF. The method
transformOrientationCommonOrigin is similar, but uses the same reference location for both
the source and target SRFs, transforming the specified Coord3D object from the source SRF to
the target SRF.

The methods transformVector, transformVectorCommonOrigin,
transformVectorInBodyFrame, and transformVectorInBodyFrameCommonOrigin are used in
dealing with vector quantities, such as velocity and acceleration information (see section 7). The
method transformVector transforms a specified vector quantity with respect to a local tangent
frame associated with a specified source reference coordinate in the source SRF, to the local
tangent frame associated with a specified target reference coordinate in the target SRF. The
method transformVectorCommonOrigin is similar, but uses the same reference location for
both the source and target SRFs. The methods transformVectorInBodyFrame and
transformVectorInBodyFrameCommonOrigin allow the source vector to be specified in terms
of a body frame rather than a local tangent frame, by specifying the orientation of the body frame
with respect to a local tangent frame.

3.1.3 SRF_Celestiocentric
The class SRF_Celestiocentric is derived from BaseSRF3D and defines SRFs that use a
Euclidean 3D coordinate system in which the origin is located at the center of mass of a celestial
body, the xy-plane is the plane of the equator, and the xz-plane contains the prime meridian. In
this manual, it is used to define the Geocentric WGS 1984 SRF (see section 4.1.2).

3.1.4 BaseSRF_WithEllipsoidalHeight
The class BaseSRF_WithEllipsoidalHeight is an abstract class that is derived from
BaseSRF3D. It is the parent class of SRF_Celestiodetic (see below), as well as other SRF
classes that use coordinate systems based on the surface of an oblate ellipsoid.

3.1.5 SRF_Celestiodetic
The class SRF_Celestiodetic is derived from BaseSRF3D defines SRFs that use a geodetic 3D
coordinate system, with coordinate-components longitude (λ) and latitude (ϕ), in radians, and
ellipsoidal height (h), in meters. In this manual, it is used to define the Geodetic WGS 1984 SRF
(see section 4.1.1).

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

10

3.1.6 BaseSRF_WithTangentPlaneSurface
The class BaseSRF_WithTangentPlaneSurface is an abstract class that is derived from
BaseSRF3D. It is the parent class of SRF_LocalTangentSpaceEuclidean (see below), as well as
other SRF classes that use coordinate systems based on planes tangent to the surface of an oblate
ellipsoid.

3.1.7 SRF_LocalTangentSpaceEuclidean
The class SRF_LocalTangentSpaceEuclidean defines SRFs that use a Euclidean 3D coordinate
system in which the xy-plane is tangent to the surface of the oblate ellipsoid that defines the
Earth reference model. In this manual, it is used to describe local SRFs for test/training ranges.
See section 4.2.1 for more details on this type of SRF.

3.1.8 SRF_LococentricEuclidean3D
The class SRF_LococentricEuclidean3D defines SRFs that use a Lococentric Euclidean 3D
coordinate system. In this manual, it is used to define SRFs for individual entities such as tanks
and aircraft, and individual entity components such as turrets (see sections 4.2.2 and 4.2.3).

3.2 Orientation Classes
The orientation class hierarchy consists of classes that represent the orientation of one SRF with
respect to another. As shown in Figure 3-1, it consists of an abstract class with five concrete
subclasses.

3.2.1 Orientation
The class Orientation represents the orientation of one SRF with respect to another. It
provides methods that are common to all orientation representations. It provides the following
methods that are referenced within this user’s manual:

1) getMatrix3x3,
2) getAxisAngle,
3) getEulerAnglesZXZ,
4) getTaitBryanAngles,
5) getQuaternion,
6) setMatrix3x3,
7) setAxisAngle,
8) setEulerAnglesZXZ,
9) setTaitBryanAngles,
10) setQuaternion, and
11) transformVector.

The first five of these methods return the desired representation of the Orientation object (see
6.2). The next five methods allow the state of the Orientation object to be set using any of the
five supported representations. The Orientation class also defines a number of other methods.
See the SRM API documentation for a complete description of these.

The method transformVector transforms the representation of a three-dimensional vector from
the source SRF of an Orientation object to the target SRF of that Orientation object.

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

11

The static method compose, which is implemented by each of the subclasses, composes two
given Orientation objects and returns the resulting Orientation object. Thus, if S1, S2, and S3
are three SRFs, Orientation12 is the orientation of S1 with respect to S2, and Orientation23 is
the orientation of S2 with respect to S3, then the composition of these two orientations is
Orientation13, the orientation of S1 with respect to S3.

3.2.2 OrientationAxisAngle
The class OrientationAxisAngle is used to create and access orientation information using an
axis-angle representation. See section 6.2.1 for more detail on this representation of orientations.

3.2.3 OrientationEulerAnglesZXZ
The class OrientationEulerAnglesZXZ is used to create and access orientation information
using an Euler angle ZXZ representation. See section 6.2.2 for more detail on this representation
of orientations.

3.2.4 OrientationTaitBryanAngles
The class OrientationTaitBryanAngles is used to create and access orientation information
using a Tait-Bryan angle representation. See section 6.2.3 for more detail on this representation
of orientations.

3.2.5 OrientationMatrix
The class OrientationMatrix is used to create and access orientation information using a 3x3
rotation matrix representation. See section 6.2.4 for more detail on this representation of
orientations.

3.2.6 OrientationQuaternion
The class OrientationQuaternion is used to create and access orientation information using a
quaternion representation. See section 6.2.5 for more detail on this representation of
orientations.

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

12

4 Example Framework
This section presents the context for the examples that are presented throughout the subsequent
sections of this document. These examples use several types of spatial reference frames, and
several types of ground and airborne platforms, including some with articulated components, to
illustrate the types of entity state transformations that may be performed using the SRM API.
These examples do not reflect the full range of spatial reference frames supported by the SRM
API, nor do they reflect the full range of entity types that can be represented.

The overall example framework is shown in Figure 4-1. Two test/training ranges are located
adjacent to each other, each with its own spatial reference frame (SRF). The spatial extents of
these two test/training range SRFs overlap somewhat. Note that, due to the curvature of the
Earth’s surface, the axes of these two SRFs are not parallel to each other. Ground forces are
operating on both test/training ranges. One force (green) is operating primarily on Range 1,
while another force (orange) is operating primarily on Range 2. Aircraft associated with both
forces are operating overhead.

Figure 4-1. Example Framework

Each platform has its own local spatial reference frame. Associated with each aircraft is a local
SRF, with axes defined in terms of the body of the aircraft. Similarly, each tank has a local hull
SRF. Each tank turret and tank gun also has its own local SRF.

4.1 Global SRFs
To illustrate typical position, orientation, and vector quantity transformations, the examples in
the subsequent sections use two global SRFs: the Geodetic WGS 1984 SRF; and the Geocentric
WGS 1984 SRF. The Geodetic WGS 1984 SRF is used in the examples to specify the positions,
orientations, and other state elements of various entities in global terms. The Geocentric WGS

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

13

1984 SRF is commonly used by applications to exchange entity state information using protocols
such as the Distributed Interactive Simulation (DIS) standard1, and so is also included in the
examples.

Figure 4-2. Global Geodetic and Geocentric SRFs

4.1.1 Geodetic WGS 1984 SRF
This is the standardized spatial reference frame identified by the SRM as
SRM_SRFCOD_GEODETIC_WGS_1984. As shown in Figure 4-2, it uses a geodetic 3D coordinate
system, with coordinate-components longitude (λ) and latitude (ϕ), in radians, and ellipsoidal
height (h), in meters, with the World Geodetic System 1984 Earth reference model
(SRM_ORMCOD_WGS_1984). The valid region for this SRF includes the surface of the oblate
ellipsoid that represents the Earth and its vicinity.

Using the SRM API, this SRF may be instantiated as follows:

 Geodetic_WGS84_SRF = SRF_Celestiodetic::create(
 SRM_ORMCOD_WGS_1984, // Object Reference Model code
 SRM_RTCOD_WGS_1984_IDENTITY); // Reference Transformation code

1 IEEE 1278.1-1995.

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

14

Note that this SRF is a curvilinear SRF, i.e., it is based on a curvilinear coordinate system that is
referenced to the surface of the WGS 1984 ellipsoid. As a result, directions, orientations, and
vector quantities that are specified with respect to this SRF are not independent of location. For
example, a vector with component values (0, 0, 1), i.e., a vector pointing “up”, denotes very
different directions, depending on whether it is located at the North pole, at the intersection of
the equator and the prime meridian, or at the South pole. Therefore, whenever a direction,
orientation, or vector quantity is specified with respect to this SRF, or any other curvilinear SRF,
a reference location must also be specified. This reference location serves as the origin of a
Local Tangent Space Euclidean (LTSE) SRF, which provides the basis for the vector component
values. The methods provided by the SRM API that are concerned with directions, orientations,
and vector quantities include reference location parameters, which are required regardless of
whether or not the SRF is curvilinear.

4.1.2 Geocentric WGS 1984 SRF
This is the standardized spatial reference frame identified by the SRM as
SRM_SRFCOD_GEOCENTRIC_WGS_1984. As shown in Figure 4-2, it uses a Euclidean 3D
coordinate system, with the axes x, y, and z, with the WGS 1984 Earth reference model. Its
origin is located at the center of mass of the Earth. The xy-plane is the plane of the equator,
while the xz-plane contains the prime meridian. The valid region of this SRF includes the
surface of the oblate ellipsoid that represents the Earth and its vicinity.

Using the SRM API, this SRF may be instantiated as follows:

 Geocentric_WGS84_SRF = SRF_Celestiocentric::create(
 SRM_ORMCOD_WGS_1984, // Object Reference Model code
 SRM_RTCOD_WGS_1984_IDENTITY); // Reference Transformation code

This SRF is a linear SRF, i.e., it is based on a linear coordinate system. Directions, orientations,
and vector quantities that are specified with respect to this SRF are independent of location. For
example, a vector with component values (0, 0, 1), always denotes the same direction, i.e., the
direction of the positive Z axis, regardless of its location. Therefore, whenever a reference
location is required by the SRM API for a direction, orientation, or vector quantity that is
specified with respect to this SRF, any convenient location may be chosen.

4.2 Local SRFs
Several types of local SRFs will also be addressed:

1) Test/training-range-based SRFs, which each are tied to a specified reference location
within one of the test/training ranges.

2) Platform-based SRFs, which each are tied to the body of a specific moving platform, such
as an aircraft or a tank.

3) Component-based SRFs, which each are tied to a particular component of a specific
platform, such as the turret of a tank.

4.2.1 Test/Training-Range-Based SRFs
A local SRF is defined for each of the two test/training ranges in the examples. These two SRFs
are illustrated in Figure 4-1. The Range 1 SRF has its origin located at the southwest corner of

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

15

the westernmost range. The Range 2 SRF has its origin located at the northeast corner of the
easternmost range.

Figure 4-3. Local Tangent Space Euclidean SRF

These two SRFs are both instances of the Local Tangent Space Euclidean (LTSE) SRF template.
These SRFs use a Euclidean 3D coordinate system, with the axes x, y, and z. As shown in Figure
4-3, the origin is tied to a reference location specified by a geodetic coordinate (λ ,ϕ , h0). The
xy plane, shown in green, is parallel to the plane that is tangent to the ellipsoid surface of the
WGS 1984 Earth reference model at the point (λ ,ϕ). The angle α is the geodetic azimuth of
the y axis. To avoid negative coordinate values, a false origin (xF, yF) may be specified.

Such local SRFs are linear SRFs, i.e., they are based on linear coordinate systems. Directions,
orientations, and vector quantities that are specified with respect to such SRFs do not vary with
location. Therefore, whenever a reference location is required by the SRM API for a direction,
orientation, or vector quantity that is specified with respect to such an SRF, any convenient
location, such as the origin of the SRF, may be chosen.

The ellipsoid heights of the origins of the two test/training range SRFs (see Figure 4-1) may
differ from each other, since they are each located on the local terrain surface at their respective
locations. In these SRFs, each positive x axis points to local east, while each positive y axis
points to local north. The positive z axes point to local up. Note that, because of the curvature of
the earth, the two z axes are not parallel to each other.

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

16

Suppose that the origin points of the two test/training ranges are separated by two degrees in
longitude, and by one degree in latitude direction. The parameters for these test/training ranges
could then be specified as:

Range 1 SRF:
 Origin longitude λ : -121°
 Origin latitude ϕ : 33°
 Origin ellipsoidal height h0: 100 m
 Rotation angle α : 0°
 False origin xF: 0 m
 False origin yF: 0 m

Range 2 SRF:
 Origin longitude λ : -119°
 Origin latitude ϕ : 34°
 Origin ellipsoidal height h0: 200 m
 Rotation angle α : 0°
 False origin xF: 500,000 m
 False origin yF: 500,000 m

The data type SRM_LTSE_Parameters contains the parameters that are used to specify an LTSE
SRF. It includes parameters (longitude, latitude, and ellipsoidal height offset) that specify the
origin location of the LTSE SRF. By default, the positive x axis points to local east, while the
positive y axis points to local north. However, an azimuth parameter is included that can be used
to explicitly rotate the x- and y-axes in the tangent plane. The height offset parameter is used to
locate the origin above or below the surface of the ellipsoid. It also includes false origin offsets,
so that negative coordinate values can be avoided.

 typedef struct
 {
 Long_Float geodetic_longitude; /* radians */
 Long_Float geodetic_latitude; /* radians */
 Long_Float azimuth; /* radians */
 Long_Float x_false_origin; /* meters */
 Long_Float y_false_origin; /* meters */
 Long_Float height_offset; /* meters */
 } SRM_LTSE_Parameters;

Using the SRM API, these LTSE SRFs can be instantiated as follows:

 SRM_LTSE_Parameters Range1_LTSE_Parameters;

 Range1_LTSE_Parameters.geodetic_longitude = -121.0 * degreesToRadians;
 Range1_LTSE_Parameters.geodetic_latitude = 33.0 * degreesToRadians;
 Range1_LTSE_Parameters.azimuth = 0.0;
 Range1_LTSE_Parameters.x_false_origin = 0.0;
 Range1_LTSE_Parameters.y_false_origin = 0.0;
 Range1_LTSE_Parameters.height_offset = 100.0;

 //SRF_LocalTangentSpaceEuclidean* Range1_SRF;

 Range1_SRF = SRF_LocalTangentSpaceEuclidean::create(
 SRM_ORMCOD_WGS_1984, // Object Reference Model code
 SRM_RTCOD_WGS_1984_IDENTITY, // Reference Transformation code
 Range1_LTSE_Parameters); // Local Tangent Space Euclidean params

 SRM_LTSE_Parameters Range2_LTSE_Parameters;

 Range2_LTSE_Parameters.geodetic_longitude = -119.0 * degreesToRadians;

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

17

 Range2_LTSE_Parameters.geodetic_latitude = 34.0 * degreesToRadians;
 Range2_LTSE_Parameters.azimuth = 0.0;
 Range2_LTSE_Parameters.x_false_origin = 500000.0;
 Range2_LTSE_Parameters.y_false_origin = 500000.0;
 Range2_LTSE_Parameters.height_offset = 200.0;

 //SRF_LocalTangentSpaceEuclidean* Range2_SRF;

 Range2_SRF = SRF_LocalTangentSpaceEuclidean::create(
 SRM_ORMCOD_WGS_1984, // Object Reference Model code
 SRM_RTCOD_WGS_1984_IDENTITY, // Reference Transformation code
 Range2_LTSE_Parameters); // Local Tangent Space Euclidean params

Figure 4-4. Aircraft Spatial Reference Frame

4.2.2 Platform-Based SRFs
For each moving platform, such as a tank or an aircraft, a platform-based SRF can be defined.
These SRFs are instances of the SRF_LococentricEuclidean3D class. Such SRFs use a
Lococentric Euclidean 3D coordinate system, with axis unit vectors u, v, and w, and units in
meters. As shown in Figures 4-4 and 4-5, the origin is specified by a lococentre, shown as a red
sphere, which specifies the current position of the platform in the appropriate test/training range

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

18

SRF. The position of the platform is typically represented by its center of mass2. The
orientation of the lococentric axes is determined by the current orientation of the platform’s body
or hull. This is specified by two direction vectors, also shown in red, with respect to the
appropriate test/training range SRF. These primary and secondary axis direction vectors are
parallel to the corresponding platform body axes. The axes of the lococentric platform-based
SRFs are shown in green in Figures 4-4 and 4-5. The positive u axis points out the front of the
platform. The positive v axis points out the right side of the platform. The positive w axis points
down out of the bottom of the platform.3

Such platform-based SRFs are linear SRFs, i.e., they are based on linear coordinate systems.
Directions, orientations, and vector quantities that are specified with respect to such SRFs do not
vary with location. Therefore, whenever a reference location is required by the SRM API for a
direction, orientation, or vector quantity that is specified with respect to such an SRF, any
convenient location, such as the origin of the SRF, may be chosen.

The following example creates a platform-based SRF for a particular aircraft. Let c, with
components (cx, cy, cz), be the coordinate of the aircraft body center of mass with respect to the
Range1_SRF at a particular time. This location is the lococentre (or origin) for the aircraft body
SRF (see Figure 4-4). Let the vectors p, with components (px, py, pz), and s, with components
(sx, sy, sz), be unit vectors with respect to the Range1_SRF, which are parallel to the aircraft body
primary and secondary axes, ubody and vbody

4,. Using the SRM API, the aircraft body SRF can be
instantiated as follows:

 // Aircraft Body SRF
 SRF_LococentricEuclidean3D* Body_SRF;
 {
 SRM_Long_Float cx = 5000.0, cy = 10000.0, cz = 5000.0; // meters
 SRM_Long_Float px = -0.4330127, py = 0.75, pz = 0.5;
 // theta = 30 degrees, lambda = 120 degrees
 SRM_Long_Float sx = 0.8660254, sy = 0.5, sz = 0.0;

 // Lococentre
 Coord3D* lococentre = Range1_SRF->createCoordinate3D(cx, cy, cz);
 //Reference location for creating directions – using, for example,
 // the Range1_SRF origin
 Coord3D* ref_coord = Range1_SRF->createCoordinate3D(0.0, 0.0, 0.0);
 // Primary axis direction vector
 Direction* primary_axis_direction = Range1_SRF->createDirection(
 *ref_coord, px, py, pz);
 // Secondary axis direction vector
 Direction* secondary_axis_direction = Range1_SRF->createDirection(
 *ref_coord, sx, sy, sz);

2 Note that, in general, the center of mass may not be static over time, as an aircraft expends fuel, jettisons
munitions, etc. Also, note that the DIS protocol specifies the reference point to be the volumetric barycenter of the
platform body, i.e., the geometric center of the volume that it occupies.
3 This arrangement of the axes with respect to the platform body conforms to the DIS protocol.
4 In the figure, these unit vectors have been lengthened to make them more visible, and to emphasize that they are
parallel to the aircraft body axes.

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

19

 Body_SRF = Range1_SRF->createLococentricEuclidean3DSRF(
 *lococentre,
 *primary_axis_direction,
 *secondary_axis_direction);
 }

Figure 4-5. Tank Spatial Reference Frame

The next example creates a platform-based SRF for a particular tank. Let c, with components
(cx, cy, cz), be the coordinate of the tank hull center of mass with respect to the Range1_SRF at a
particular time. This location is the lococentre (or origin) for the tank hull SRF (see Figure 4-5).
Let the vectors p, with components (px, py, pz), and s, with components (sx, sy, sz), be unit vectors
with respect to the Range1_SRF, which are parallel to the tank hull primary and secondary axes,
uhull and vhull, respectively. Using the SRM API, the tank hull SRF can be instantiated as
follows:

 // Tank Hull SRF
 SRF_LococentricEuclidean3D* Hull_SRF;
 {
 SRM_Long_Float cx = 2000.0, cy = 5000.0, cz = 500.0; // meters
 SRM_Long_Float px = 0.25, py = 0.9330127, pz = 0.25881905;
 // theta = 75 degrees, lambda = 15 degrees
 SRM_Long_Float sx = 0.96592583, sy = -0.25881905, sz = 0.0;

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

20

 // Lococentre
 Coord3D* lococentre = Range1_SRF->createCoordinate3D(cx, cy, cz);
 //Reference location for creating directions – using, for example,
 // the Range1_SRF origin
 Coord3D* ref_coord = Range1_SRF->createCoordinate3D(0.0, 0.0, 0.0);
 // Primary axis direction vector
 Direction* primary_axis_direction = Range1_SRF->createDirection(
 *ref_coord, px, py, pz);
 // Secondary axis direction vector
 Direction* secondary_axis_direction = Range1_SRF->createDirection(
 *ref_coord, sx, sy, sz);

 Hull_SRF = Range1_SRF->createLococentricEuclidean3DSRF(
 *lococentre,
 *primary_axis_direction,
 *secondary_axis_direction);

 Range1_SRF->freeDirection(secondary_axis_direction);
 Range1_SRF->freeDirection(primary_axis_direction);
 Range1_SRF->freeCoordinate3D(ref_coord);
 Range1_SRF->freeCoordinate3D(lococentre);
 }

Figure 4-6. Tank Turret Spatial Reference Frame

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

21

4.2.3 Component-Based SRFs
Local SRFs can also be defined for articulated components of a platform. For example, for each
tank, local SRFs can be defined for its turret, which rotates with respect to the hull, and for its
gun, which can change its elevation angle with respect to the turret. Such SRFs are also
instances of the Lococentric Euclidean 3D SRF template, which use a Lococentric Euclidean 3D
coordinate system, with axis unit vectors u, v, and w, and units in meters.

Such component-based SRFs are linear SRFs, i.e., they are based on linear coordinate systems.
Directions, orientations, and vector quantities that are specified with respect to such SRFs do not
vary with location. Therefore, whenever a reference location is required by the SRM API for a
direction, orientation, or vector quantity that is specified with respect to such an SRF, any
convenient location, such as the origin of the SRF, may be chosen.

The origin of the turret coordinate system is a point on the axis of rotation of the turret, specified
in terms of the tank’s local hull SRF. The orientation of the lococentric axes is determined by
the current orientation of the turret, with respect to the hull. In Figure 4-6, the lococentre and the
primary and secondary axis direction vectors that relate the turret coordinate system to the hull
coordinate system are shown in red. The lococentric axes of the turret are shown in green with
the subscript “turret”. The positive u axis points out the front of the turret. The positive v axis
points out the right side of the turret. The positive w axis points down out the bottom of the
turret, parallel to the positive w axis of the hull. The turret coordinate system has only one
degree of freedom, i.e., rotation about the turret’s w axis.

The next example creates a local SRF for the turret of a particular tank. Let t, with components
(tu, tv, tw), be the lococentre of the turret with respect to the Hull_SRF (see Figure 4-6). Let the
vectors p, with components (pu, pv, pw), and s, with components (su, sv, sw), be unit vectors with
respect to the Hull_SRF, which are parallel to the turret primary and secondary axes, uturret and
vturret, respectively. Using the SRM API, the turret SRF can be instantiated as follows:

 // Tank Turret SRF
 SRF_LococentricEuclidean3D* Turret_SRF;
 {
 SRM_Long_Float tu = 2.0, tv = 0.0, tw = -2.0;
 SRM_Long_Float pu = 0.70710678, pv = -0.70710678, pw = 0.0;
 // theta = 0 degrees, lambda = -45 degrees
 SRM_Long_Float su = 0.70710678, sv = 0.70710678, sw = 0.0;

 // Lococentre
 Coord3D* lococentre = Hull_SRF->createCoordinate3D(tu, tv, tw);
 //Reference location for creating directions – using, for example,
 // the Hull_SRF origin
 Coord3D* ref_coord = Hull_SRF->createCoordinate3D(0.0, 0.0, 0.0);
 // Primary axis direction vector
 Direction* primary_axis_direction = Hull_SRF->createDirection(
 *ref_coord, pu, pv, pw);
 // Secondary axis direction vector
 Direction* secondary_axis_direction = Hull_SRF->createDirection(
 *ref_coord, su, sv, sw);
 // Turret SRF
 Turret_SRF = Hull_SRF->createLococentricEuclidean3DSRF(

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

22

 *lococentre,
 *primary_axis_direction,
 *secondary_axis_direction);

 Hull_SRF->freeDirection(secondary_axis_direction);
 Hull_SRF->freeDirection(primary_axis_direction);
 Hull_SRF->freeCoordinate3D(ref_coord);
 Hull_SRF->freeCoordinate3D(lococentre);
 }

The origin of the gun coordinate system is the point along the long axis of the gun about which it
rotates to change its elevation angle. The orientation of the axes of the gun coordinate system is
determined by the current elevation angle of the gun, with respect to the turret. In Figure 4-7, the
lococentre and the primary and secondary axis direction vectors that relate the gun coordinate
system to the turret coordinate system are shown in red. The lococentric axes of the gun are
shown in green with the subscript “gun”. The positive u axis points out the barrel of the gun.
The positive v axis points to the right, perpendicular to the gun barrel, and parallel to the positive
v axis of the turret. The positive w axis points down, perpendicular to the gun barrel, as well as
perpendicular to the v axis.

Figure 4-7. Tank Gun Spatial Reference Frame

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

23

The final example creates a local SRF for the gun of the tank. Let g, with components (gu, gv,
gw), be the lococentre of the gun with respect to the Turret_SRF (see Figure 4-7). Let the
vectors p, with components (pu, pv, pw), and s, with components (su, sv, sw), be unit vectors with
respect to the Turret_SRF, which are parallel to the gun primary and secondary axes, , ugun and
vgun, respectively. Using the SRM API, the gun SRF can be instantiated as follows:

 // Tank Gun SRF
 SRF_LococentricEuclidean3D* Gun_SRF;
 {
 SRM_Long_Float gu = 3.0, gv = 0.0, gw = 0.0; // meters
 SRM_Long_Float pu = 0.96592583, pv = 0.0, pw = -0.25881905;
 // theta = -15 degrees, lambda = 0 degrees
 SRM_Long_Float su = 0.0, sv = 1.0, sw = 0.0;

 // Lococentre
 Coord3D* lococentre = Turret_SRF->createCoordinate3D(gu, gv, gw);
 //Reference location for creating directions – using, for example,
 // the Turret_SRF origin
 Coord3D* ref_coord = Turret_SRF->createCoordinate3D(0.0, 0.0, 0.0);
 // Primary axis direction vector
 Direction* primary_axis_direction = Turret_SRF->createDirection(
 *ref_coord, pu, pv, pw);
 // Secondary axis direction vector
 Direction* secondary_axis_direction = Turret_SRF->createDirection(
 *ref_coord, su, sv, sw);
 // Gun SRF
 Gun_SRF = Turret_SRF->createLococentricEuclidean3DSRF(
 *lococentre,
 *primary_axis_direction,
 *secondary_axis_direction);

 Turret_SRF->freeDirection(secondary_axis_direction);
 Turret_SRF->freeDirection(primary_axis_direction);
 Turret_SRF->freeCoordinate3D(ref_coord);
 Turret_SRF->freeCoordinate3D(lococentre);
 }

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

24

5 Position
This section addresses the transformation of position information from one spatial reference
frame to another.

5.1 Concept
Position refers to the location of a particle or rigid body with respect to a specific spatial
reference frame, in either two or three dimensions. All of the spatial reference frames that will
be used here are three-dimensional. As shown in Figure 5-1, position can be considered to be a
vector from the origin of the SRF to the location of the particle or rigid body. It is usually
symbolized as p. The coordinate axis names and the associated units vary, depending on the
nature of the SRF.

The position of a rigid body is denoted by a representative point, which is usually, but not
always, considered to be at the center of mass of that body.

Figure 5-1. Position.

5.2 Transformation procedure
The general procedure for transforming a position from one SRF to another is:
1) Create the source SRF object, as shown in Section 4.
2) Create the target SRF object, as shown in Section 4.

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

25

3) Create a Coord3D object using the createCoordinate3D method of the source SRF object.
4) Obtain the equivalent Coord3D object for the target SRF by using the changeCoordinate3D

method of the target SRF object.

The method createCoordinate3D creates a Coord3D object from three coordinate component
values that are specified as input parameters. As used in this manual, it is invoked as follows:

 Coord3D* coordinate = SRF->createCoordinate3D (

first_coordinate_component, /* input, Long_Float */
second_coordinate_component, /* input, Long_Float */
third_coordinate_component); /* input, Long_Float */

The method getCoordinate3DValues outputs the three coordinate component values of a
specified Coord3D object. As used in this manual, it is invoked as follows.

 SRF->getCoordinate3DValues (coordinate, /* input, Coord3D */

first_coordinate_component, /* output, Long_Float */
second_coordinate_component, /* output, Long_Float */
third_coordinate_component); /* output, Long_Float */

The method changeCoordinate3DSRF transforms a specified Coord3D object from a specified
source SRF to the target SRF. As used in this manual, it is invoked as follows.

 SRM_Coordinate_Valid_Region valid_region =
 target_SRF->changeCoordinate3DSRF (

source_coordinate, /* input, Coord3D */
target_coordinate); /* output, Coord3D */

The enumerated type SRM_Coordinate_Valid_Region describes the position of a coordinate
with respect to the defined valid region of a specified SRF.
 typedef enum
 {
 SRM_COORDVALRGN_VALID,
 SRM_COORDVALRGN_EXTENDED_VALID,
 SRM_COORDVALRGN_DEFINED)
 } SRM_Coordinate_Valid_Region;

Its possible values are:

VALID – the position is within the valid region of the specified SRF.
EXTENDED_VALID – the position is outside the valid region, but is within the extended valid
region, of the specified SRF.
DEFINED – the position is not within either the valid region or the extended valid region of
the specified SRF, but is in the domain of the coordinate system generating function.

5.3 Examples
The following examples show how to transform positions between the various SRFs defined in
Section 4.

5.3.1 Transform Between Range SRFs
Example 1: Transform the position of a tank from the Range 1 SRF to the Range 2 SRF.
1) Create the SRF object for the Range 1 SRF (see Section 4.2.1).

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

26

2) Create the SRF object for the Range 2 SRF (see Section 4.2.1).
3) Create a Coord3D object using the createCoordinate3D method of the Range 1 SRF object.

 SRM_Long_Float tank_range1_x = 2000.0, tank_range1_y = 5000.0,
 tank_range1_z = 500.0; // meters

 Coord3D* range1_coordinate = Range1_SRF->createCoordinate3D(
 tank_range1_x,
 tank_range1_y,
 tank_range1_z);

4) Obtain the equivalent Coord3D object for the Range 2 SRF by using the

changeCoordinate3D method of the Range 2 SRF object.

 Coord3D* range2_coordinate = Range2_SRF->createCoordinate3D(

 0.0, 0.0, 0.0);

 SRM_Coordinate_Valid_Region region = Range2_SRF->changeCoordinate3DSRF(
 *range1_coordinate,
 *range2_coordinate);

 SRM_Long_Float tank_range2_x = 0.0, tank_range2_y = 0.0,

 tank_range2_z = 0.0;

 Range2_SRF->getCoordinate3DValues(*range2_coordinate,
 tank_range2_x,
 tank_range2_y,
 tank_range2_z);

The output parameter region indicates the status of the resulting coordinate with respect to the
valid region, and extended valid region, of the target SRF (see 5.2).

5.3.2 Transform From Range to Geocentric
Example 2: Transform the position of a tank from the Range 1 SRF to the Geocentric WGS
1984 SRF.
1) Create the SRF object for the Range 1 SRF (see Section 4.2.1).
2) Create the SRF object for the Geocentric WGS 1984 SRF (see Section 4.1.2).
3) Create a Coord3D object using the createCoordinate3DSRF method of the Range 1 SRF

object.

 SRM_Long_Float tank_range1_x = 2000.0, tank_range1_y = 5000.0,
 tank_range1_z = 500.0; // meters

 Coord3D* range1_coordinate = Range1_SRF->createCoordinate3D(
 tank_range1_x,
 tank_range1_y,
 tank_range1_z);

4) Obtain the equivalent Coord3D object for the Geocentric WGS 1984 SRF by using the

changeCoordinate3D method of the Geocentric WGS 1984 SRF object.

 Coord3D* geocentric_coordinate =
 Geocentric_WGS84_SRF->createCoordinate3D(0.0, 0.0, 0.0);

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

27

 SRM_Coordinate_Valid_Region region =
 Geocentric_WGS84_SRF->changeCoordinate3DSRF(
 *range1_coordinate,
 *geocentric_coordinate);

 SRM_Long_Float tank_geocentric_x = 0.0, tank_geocentric_y = 0.0,
 tank_geocentric_z = 0.0;

 Geocentric_WGS84_SRF->getCoordinate3DValues(*geocentric_coordinate,
 tank_geocentric_x,
 tank_geocentric_y,
 tank_geocentric_z);

5.3.3 Transform From Range to Geodetic
Example 3: Transform the position of a tank from the Range 2 SRF to the Geodetic WGS 1984
SRF.
1) Create the SRF object for the Range 2 SRF (see Section 4.2.1).
2) Create the SRF object for the Geodetic WGS 1984 SRF (see Section 4.1.1).
3) Create a Coord3D object using the createCoordinate3DSRF method of the Range 2 SRF

object.

 SRM_Long_Float tank_range2_x = -5000.0, tank_range2_y = -3000.0,
 tank_range2_z = 400.0; // meters

 Coord3D* range2_coordinate = Range2_SRF->createCoordinate3D(
 tank_range2_x,
 tank_range2_y,
 tank_range2_z);

4) Obtain the equivalent Coord3D object for the Geodetic WGS 1984 SRF by using the

changeCoordinate3D method of the Geodetic WGS 1984 SRF object.

 Coord3D* geodetic_coordinate =
 Geodetic_WGS84_SRF->createCoordinate3D(0.0, 0.0, 0.0);

 SRM_Coordinate_Valid_Region region =
 Geodetic_WGS84_SRF->changeCoordinate3DSRF(
 *range2_coordinate,
 *geodetic_coordinate);

 SRM_Long_Float tank_geodetic_longitude = 0.0,
 tank_geodetic_latitude = 0.0, tank_ellipsoidal_height = 0.0;

 Geodetic_WGS84_SRF->getCoordinate3DValues(*geodetic_coordinate,
 tank_geodetic_longitude,
 tank_geodetic_latitude,
 tank_ellipsoidal_height);

5.3.4 Transform From Geodetic to Geocentric
Example 4: Transform the position of an aircraft from the Geodetic WGS 1984 SRF to the
Geocentric WGS 1984 SRF.

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

28

1) Create the SRF object for the Geodetic WGS 1984 SRF (see Section 4.1.1).
2) Create the SRF object for the Geocentric WGS 1984 SRF (see Section 4.1.2).
3) Create a Coord3D object using the createCoordinate3DSRF method of the Geodetic WGS

1984 SRF object.

 SRM_Long_Float aircraft_longitude = -120.5 * degreesToRadians,
 aircraft_latitude = 33.5 * degreesToRadians,
 aircraft_ellipsoidal_height = 5000.0; // meters

 Coord3D* geodetic_coordinate = Geodetic_WGS84_SRF->createCoordinate3D(
 aircraft_longitude,
 aircraft_latitude,
 aircraft_ellipsoidal_height);

4) Obtain the equivalent Coord3D object for the Geocentric WGS 1984 SRF by using the

changeCoordinate3D method of the Geocentric WGS 1984 SRF object.

 Coord3D* geocentric_coordinate =
 Geocentric_WGS84_SRF->createCoordinate3D(0.0, 0.0, 0.0);

 SRM_Coordinate_Valid_Region region =
 Geocentric_WGS84_SRF->changeCoordinate3DSRF(
 *geodetic_coordinate,
 *geocentric_coordinate);

 SRM_Long_Float aircraft_x = 0.0, aircraft_y = 0.0, aircraft_z = 0.0;

 Geocentric_WGS84_SRF->getCoordinate3DValues(*geocentric_coordinate,
 aircraft_x,
 aircraft_y,
 aircraft_z);

5.3.5 Transform From Geodetic to Range
Example 5: Transform the position of an aircraft from the Geodetic WGS 1984 SRF to the
Range 2 SRF.
1) Create the SRF object for the Geodetic WGS 1984 SRF (see Section 4.1.1).
2) Create the SRF object for the Range 2 SRF (see Section 4.2.1).
3) Create a Coord3D object using the createCoordinate3DSRF method of the Geodetic WGS

1984 SRF object.

 SRM_Long_Float aircraft_longitude = -120.5 * degreesToRadians,
 aircraft_latitude = 33.5 * degreesToRadians,
 aircraft_ellipsoidal_height = 5000.0; // meters

 Coord3D* geodetic_coordinate = Geodetic_WGS84_SRF->createCoordinate3D(
 aircraft_longitude,
 aircraft_latitude,
 aircraft_ellipsoidal_height);

4) Obtain the equivalent Coord3D object for the Range 2 SRF by using the

changeCoordinate3D method of the Range 2 SRF object.

 Coord3D* range2_coordinate =

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

29

 Range2_SRF->createCoordinate3D(0.0, 0.0, 0.0);

 SRM_Coordinate_Valid_Region region = Range2_SRF->changeCoordinate3DSRF(
 *geodetic_coordinate,
 *range2_coordinate);

 SRM_Long_Float aircraft_range2_x = 0.0, aircraft_range2_y = 0.0,
 aircraft_range2_z = 0.0;

 Range2_SRF->getCoordinate3DValues(*range2_coordinate,
 aircraft_range2_x,
 aircraft_range2_y,
 aircraft_range2_z);

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

30

6 Orientation
This section addresses the transformation of orientation information from one spatial reference
frame to another.

6.1 Concept
Orientation refers to the relationship between the axes of one spatial reference frame, typically
the coordinate axes of a rigid body, such as an aircraft, and the axes of a second spatial reference
frame. The second SRF is typically referred to as the “world” SRF. Examples include the
orientation of a tank SRF with respect to a test/training range (world) SRF, and the orientation of
a test/training range SRF with respect to a geodetic (world) SRF. Since a rigid body may be
rotated around the point that represents its position (usually its center of mass), the position alone
is not enough to completely describe the static state of a rigid body. Orientation is usually
symbolized as Ω (upper case omega).

In general, an orientation describes the relationship between the coordinate axes of two spatial
reference frames. In this sense, an orientation can be considered to be an operator that allows
vectors, such as velocity vectors, to be transformed from one spatial reference frame to another.
Multiple orientations can be composed to form a single compound orientation. For example, if
orientation ABΩ relates the axes of SRF A with the axes of SRF B, and orientation BCΩ relates
the axes of SRF B with the axes of SRF C, then orientation ACΩ can be composed from
orientation ABΩ and orientation BCΩ to relate the axes of SRF A with the axes of SRF C.

6.2 Representations
An orientation specifies how to transform the coordinate axes of one spatial reference frame to
match the coordinate axes of another spatial reference frame. There are many ways to represent
the orientation of a rigid body. The SRM supports five representations:

1. as a rotation angle with respect to a vector (axis-angle), or
2. as a sequence of three rotations around the principal axes (Euler angles, in z-x-z order:

(spin, nutation, and precession), or
3. as a sequence of three rotations around the principal axes (Tait-Bryan angles, in x-y-z

order: roll, pitch, and yaw, or
4. as a 3x3 rotation matrix, or
5. as a quaternion.

6.2.1 Axis-Angle Representation
The axis-angle representation of an orientation consists of a unit vector n (with components n1,
n2, and n3) and a rotation angle θ . As shown in Figure 6-1, this represents a rotation of the
world coordinate axes through the angle θ about the axis defined by n. This rotation, indicated
by the red arrows, relates the world coordinate axes (x, y, z), shown in green, with the aircraft
body axes (x’, y’, z’), shown in blue. The green-tinted plane in the figure is parallel to the xy-
plane of the world coordinate system, while the blue-tinted plane is the aircraft body x’y’-plane.
The rotation direction is determined by the right hand rule, i.e., if the right hand grasps the
vector, with the thumb pointing in the direction of the vector, the fingers curl around the vector
in the direction of the rotation angle θ .

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

31

Figure 6-1. Axis-Angle Representation of Orientation

The data type SRM_Axis_Angle_Params specifies the parameters that allow an Orientation object
to be instantiated using an axis-angle representation. It consists of an axis, specified by a 3D
vector, and a rotation angle about that axis. The vector is expressed in terms of its three
components in the world SRF. The rotation angle is given in radians.

 typedef struct
 {
 Vector_3D axis;
 SRM_Long_Float angle; /* radians */
 } SRM_Axis_Angle_Params;

To create an Orientation object using the axis-angle representation:

 // Axis-Angle Representation
 SRM_Long_Float n1 = 1.0, n2 = 0.0, n3 = 0.0, theta = 0.123;
 SRM_Axis_Angle_Params my_axis_angle_params;

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

32

 my_axis_angle_params.axis.array[0] = n1;
 my_axis_angle_params.axis.array[1] = n2;
 my_axis_angle_params.axis.array[2] = n3;
 my_axis_angle_params.angle = theta;

 OrientationAxisAngle my_orientation(my_axis_angle_params);

The method getAxisAngle returns the representation of an Orientation object in axis-angle
form. It is invoked as follows.

 my_axis_angle_params = my_orientation.getAxisAngle();

6.2.2 Euler Angle Z-X-Z Representation
Euler angles specify an orientation in terms of three consecutive rotations about the principal
coordinate system axes. There are twelve distinct ways to select such a sequence of rotations
(for right-handed axes). Each of these orderings is called an Euler angle convention.
Unfortunately, in the broader community, there is little agreement on how to identify these
conventions.

The SRM supports the Euler angle convention identified as the z-x-z convention. This is also
known as the 3-1-3 convention, or the x-convention. (The SRM also supports the Tait-Bryan
angle representation, which is another widely used Euler angle convention. See 6.2.3.) As
shown in Figure 6-2, this involves a sequence of three rotations that relate the world coordinate
axes, shown in green, with the aircraft body coordinate axes, shown in blue. The green tinted
plane in the figure is parallel to the world reference system xy-plane, while the blue-tinted plane
is the aircraft body x’’’y’’’-plane.

The first rotation, ()z αΩ , is about the z-axis, through angle α . This yields the x’ and y’ axes,
shown in yellow in Figure 6-2, while the z axis, shown in green, remains unchanged.

The second rotation, ()x βΩ , is about the (original) x-axis, through angle β . This yields the x’’,
y’’, and z’’ axes, shown in orange in Figure 6-2.

The third rotation, ()z γΩ , is again about the (original) z-axis, through angle γ . This yields the
x’’’, y’’’, and z’’’ axes, shown in blue in Figure 6-2, which are aligned with the aircraft body
axes.

The red arrows in Figure 6-2 show how the x, y and z axes, shown in green, are progressively
transformed by each of these rotations to become first the x’, y’ and z’ axes, shown in yellow,
then the x’’, y’’ and z’’ axes, shown in orange, and finally the x’’’, y’’’ and z’’’ axes, shown in
blue.

In some contexts, α is called the spin angle, β is called the nutation angle, and γ is called the
precession angle.

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

33

Figure 6-2. Euler Angle Z-X-Z Representation of Orientation

This data type SRM_Euler_Angles_ZXZ_Params specifies the parameters that allow an
Orientation object to be instantiated using an Euler angles ZXZ representation. It consists of
three rotation angles in radians.

 typedef struct
 {
 SRM_Long_Float spin; ; /* radians */
 SRM_Long_Float nutation; ; /* radians */
 SRM_Long_Float precession; ; /* radians */
 } SRM_Euler_Angles_ZXZ_Params;

To create an Orientation object using the Euler angle z-x-z representation:

 // Euler Angle Z-X-Z Representation
 SRM_Long_Float alpha = 1.0, beta = 0.0, gamma = 0.123;
 SRM_Euler_Angles_ZXZ_Params my_euler_angle_params;

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

34

 my_euler_angle_params.spin = alpha;
 my_euler_angle_params.nutation = beta;
 my_euler_angle_params.precession = gamma;

 OrientationEulerAnglesZXZ my_orientation(my_euler_angle_params);

The method getEulerAnglesZXZ returns the representation of an Orientation object in Euler
angles ZXZ form. It is invoked as follows.

 my_euler_angle_params = my_orientation.getEulerAnglesZXZ();

6.2.3 Tait-Bryan Angle Representation
Another widely used Euler angle convention is the x-y-z convention.5 Euler angles in this
convention are called Tait-Bryan angles. They are also sometimes called Cardano angles, or
nautical angles. As shown in Figure 6-3, this involves a sequence of three rotations that relate
the world coordinate axes, shown in green, with the aircraft body coordinate axes, shown in blue.
The green tinted plane in the figure is parallel to the world reference system xy-plane, while the
blue-tinted plane is the aircraft body x’’’y’’’-plane.

The first rotation, ()x ϕΩ , is about the x-axis, through angle ϕ . This gives the y’, and z’ axes,
shown in yellow in Figure 6-3, while the x axis remains unchanged.

The second rotation, ()y θΩ , is about the (original) y-axis, through angle θ . This gives the x’’,
y’’, and z’’ axes, shown in orange in Figure 6-3.

The third rotation, ()z ψΩ , is about the (original) z-axis, through angle ψ . This gives the x’’’,
y’’’, and z’’’ axes, shown in blue in Figure 6-3, which are aligned with the aircraft body axes.

The red arrows in Figure 6-3 show how the x, y, and z axes, shown in green, are progressively
transformed by each of these rotations to become: first the x’, y’, and z’ axes, shown in yellow;
then the x’’, y’’, and z’’ axis, shown in orange; and finally the x’’’, y’’’, and z’’’ axis, shown in
blue.

In some contexts, ϕ is called the roll (or bank or tilt) angle, θ is called the pitch angle, and ψ is
called the yaw (or heading or azimuth) angle. Figure 6-3 is consistent with these terms as used
with an East-North-Up (ENU) axis convention.

This data type SRM_Tait_Bryan_Angles_Params specifies the parameters that allow an
Orientation object to be instantiated using a Tait-Bryan angles representation. It consists of
three rotation angles in radians.

5 This convention is used to specify orientation in the DIS standard.

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

35

Figure 6-3. Tait-Bryan Angle Representation of Orientation

 typedef struct
 {
 SRM_Long_Float roll; /* radians */
 SRM_Long_Float pitch; /* radians */
 SRM_Long_Float yaw; /* radians */
 } SRM_Tait_Bryan_Angles_Params;

To create an Orientation object using the Tait-Bryan angle representation:

 // Tait-Bryan Angle Representation
 SRM_Long_Float psi = 1.0, theta = 0.0, phi = 0.123;
 SRM_Tait_Bryan_Angles_Params my_tait_bryan_angle_params;

 my_tait_bryan_angle_params.roll = psi;
 my_tait_bryan_angle_params.pitch = theta;
 my_tait_bryan_angle_params.yaw = phi;

 OrientationTaitBryanAngles my_orientation(my_tait_bryan_angle_params);

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

36

The method getTaitBryanAngles returns the representation of an Orientation object in Tait-
Bryan angles form. It is invoked as follows.

 my_tait_bryan_angle_params = my_orientation.getTaitBryanAngles();

6.2.4 3x3 Rotation Matrix Representation
The orientation of a rigid body can also be represented in the form of a 3x3 rotation matrix. To
represent the Euler angle z-x-z convention discussed in section 6.2.2, the equivalent 3x3 rotation
matrix representation is:

() () ()
cos cos cos sin sin cos sin cos cos sin sin sin
sin cos cos cos sin cos cos cos sin sin sin cos

sin sin sin cos cos

α β γ

α γ β α γ β α γ α γ β α
α γ β α γ β α γ α γ β α

β γ β γ β

=

− +⎛ ⎞
⎜ ⎟− − −⎜ ⎟
⎜ ⎟−⎝ ⎠

z x zΩ Ω Ω

This data type SRM_Matrix_3x3 specifies the parameters that allow an Orientation object to be
instantiated using a 3x3 rotation matrix representation. It consists of the nine matrix elements.

 typedef struct
 {
 SRM_Long_Float array[3][3];
 } SRM_Matrix_3x3;

To create an Orientation object using the 3x3 rotation matrix representation:

 // 3x3 Rotation Matrix Representation
 SRM_Long_Float alpha = 1.0, beta = 0.0, gamma = 0.123;
 SRM_Long_Float a11, a12, a13, a21, a22, a23, a31, a32, a33;

 a11 = cos(alpha)*cos(gamma) - cos(beta)*sin(alpha)*sin(gamma);
 a12 = cos(beta)*sin(alpha)*cos(gamma) + cos(alpha*sin(gamma);
 a13 = sin(beta)*sin(alpha);
 a21 = -sin(alpha)*cos(gamma) - cos(beta)*cos(alpha)*sin(gamma);
 a22 = cos(beta)*cos(alpha)*cos(gamma) - sin(alpha)*sin(gamma);
 a23 = sin(beta)*cos(gamma);
 a31 = sin(beta)*sin(gamma);
 a32 = -sin(beta)*cos(gamma);
 a33 = cos(beta);

 SRM_Matrix_3x3 my_matrix_3x3;

 my_matrix_3x3.array[0][0] = a11;
 my_matrix_3x3.array[0][1] = a12;
 my_matrix_3x3.array[0][2] = a13;
 my_matrix_3x3.array[1][0] = a21;
 my_matrix_3x3.array[1][1] = a22;
 my_matrix_3x3.array[1][2] = a23;
 my_matrix_3x3.array[2][0] = a31;
 my_matrix_3x3.array[2][1] = a32;
 my_matrix_3x3.array[2][2] = a33;

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

37

 OrientationMatrix my_orientation(my_matrix_3x3);

Of course, given the three angles, α , β , and γ , it would be much simpler to create the
Orientation object using the Euler angles ZXZ representation, as shown in Section 6.2.2. In
practice, an Orientation object would only be created using the 3x3 rotation matrix
representation when the matrix elements are readily available.

For example, to convert between the East-North-Up (ENU) axis convention shown in Figure 6-3
and the North-East-Down (NED) axis convention used by the aeronautical community, an
Orientation object could be created from the matrix:

NED ENU→

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎝ ⎠

0 1 0
1 0 0
0 0 1

Ω

 SRM_Matrix_3x3 ned_enu_matrix_3x3;
 ned_enu_matrix_3x3.array[0][0] = 0.0;
 ned_enu_matrix_3x3.array[0][1] = 1.0;
 ned_enu_matrix_3x3.array[0][2] = 0.0;
 ned_enu_matrix_3x3.array[1][0] = 1.0;
 ned_enu_matrix_3x3.array[1][1] = 0.0;
 ned_enu_matrix_3x3.array[1][2] = 0.0;
 ned_enu_matrix_3x3.array[2][0] = 0.0;
 ned_enu_matrix_3x3.array[2][1] = 0.0;
 ned_enu_matrix_3x3.array[2][2] = -1.0;
 }
 OrientationMatrix orientation_ned_enu =

new OrientationMatrix (ned_enu_matrix_3x3);

The method getMatrix3x3 returns the representation of an Orientation object in 3x3 rotation
matrix form. It is invoked as follows.

 my_matrix_3x3 = my_orientation.getMatrix3x3();

6.2.5 Quaternion Representation
The word “quaternion” means “a set of four.” Quaternions are elements of a 4-dimensional
vector space. They were first described by the Irish mathematician Sir William Rowan Hamilton
in 1843 and applied to mechanics in three-dimensional space. From a purely geometric point of
view, a quaternion may be regarded as the quotient of two vectors, or, equivalently, as the
operator that transforms one vector into another. Due to certain compactness, efficiency, and
stability advantages over matrices, quaternions have found their way into applications in
computer graphics, robotics, global navigation, and the orbital mechanics of satellites.

In analogy to complex numbers, quaternion axes , , ,i j k are defined with the following
relationships: 2 2 2 1= = = = −i j k ijk . A quaternion q is denoted as 0 1 2 3e e e e= + + +q i j k .
This is known as the Hamilton form. The first term 0e is called the “real” (or “scalar”) part of q

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

38

and 1 2 3e e e+ +i j k is called the “imaginary” (or “vector”) part of q . The SRM uses a convention
known as the 4-tuple form, which is simply the 4-tuple of numbers ()0 1 2 3, , ,e e e e=q .

The data type SRM_Quaternion_Params specifies the parameters that allow an Orientation object
to be instantiated using a quaternion representation. It consists of a 4-tuple of numbers, the
scalar part and the three vector parts. The parameter values must meet the constraint:
e e e e+ + + =2 2 2 2

0 1 2 3 1

 typedef struct
 {
 SRM_Long_Float e0; /* scalar component */
 SRM_Long_Float e1; /* i component */
 SRM_Long_Float e2; /* j component */
 SRM_Long_Float e3; /* k component */
 } SRM_Quaternion_Params;

To create an Orientation object using the quaternion representation:

 // Quaternion Representation
 SRM_Long_Float e_0 = 0.97098796, e_1 = -0.10497177, e_2 = 0.18746797,
 e_3 = 0.10497177;
 SRM_Quaternion_Params my_quaternion_params;

 my_quaternion_params.e0 = e_0;
 my_quaternion_params.e1 = e_1;
 my_quaternion_params.e2 = e_2;
 my_quaternion_params.e3 = e_3;

 OrientationQuaternion my_orientation(my_quaternion_params);

The method getQuaternion returns the representation of an Orientation object in quaternion
form. It is invoked as follows.

 my_quaternion_params = my_orientation.getQuaternion();

6.2.6 Orientation Representation Access
Once it has been defined, an Orientation object can return its value in any of the supported
representations described above. This is accomplished using a collection of access methods that
are supported by all Orientation objects.

Given an Orientation object called my_orientation, to obtain its axis-angle representation:

 SRM_Axis_Angle_Params my_axis_angle_params =
 my_orientation.getAxisAngle();

To obtain its Euler angle z-x-z representation:

 SRM_Euler_Angles_ZXZ_Params my_euler_angle_params =
 my_orientation.getEulerAnglesZXZ();

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

39

To obtain its Tait-Bryan angle representation:

 SRM_Tait_Bryan_Angles_Params my_tait_bryan_angle_params =
 my_orientation.getTaitBryanAngles();

To obtain its 3x3 rotation matrix representation:

 SRM_Matrix_3x3 my_matrix_3x3 = my_orientation.getMatrix3x3();

And finally, to obtain its quaternion representation:

 SRM_Quaternion_Params my_quaternion_params =
 my_orientation.getQuaternion();

6.3 Transformation procedure
The general procedure for transforming an orientation from one SRF to another is:
1) Create the source SRF object, as shown in Section 4.
2) Create the target SRF object, as shown in Section 4.
3) Create the source Orientation object that relates the rigid body axes to the source SRF.
4) Obtain the target Orientation object using the transformOrientation (or

transformOrientationCommonOrigin) method of the target SRF.
5) Retrieve the desired representation of the target Orientation object.

The two variations of the transformOrientation method are described below.

6.3.1 Transform Orientation
Given an orientation with respect to a local tangent frame (LTFS) associated with a reference
location in the source SRF, the method transformOrientation computes the orientation with
respect to the local tangent frame (LTFT) associated with the specified reference location in the
target SRF. The output orientation is computed by composing the orientation of LTFS with
respect to LTFT with the source orientation. The invoking SRF is the target SRF.

This method takes 3 input parameters:
1) source reference location (a coordinate in the source SRF) where the origin of LTFS is located.

(In the C++ and Java implementations, the source SRF is implied by the source reference
location.)

2) source orientation of some linear reference frame with respect to LTFS.
3) target reference location (a coordinate in this SRF, the target SRF) where the origin of LTFT is

located.

This method computes 1 output parameter:
1) target orientation with respect to LTFT.

It is invoked as follows:

 target_SRF->transformOrientation (

source_ref_coord, /* input, Coord3D */
source_orientation, /* input, Orientation */
target_ref_coord, /* input, Coord3D */

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

40

target_orientation); /* output, Orientation */

6.3.2 Transform Orientation with Common Origin
Given an orientation with respect to a local tangent frame (LTFS) associated with a reference
location in the source SRF, the method transformOrientationCommonOrigin computes the
orientation with respect to the local tangent frame (LTFT) associated with the specified reference
location in the target SRF. LTFS and LTFT have a common origin. The output orientation is
computed by composing the orientation of LTFS with respect to LTFT with the input orientation.
The invoking SRF is the target SRF.

This method takes 2 input parameters:
1) source reference location (a coordinate in the source SRF) where the origin of LTFS is located.
2) source orientation of some linear reference frame with respect to LTFS.

This method computes 2 output parameters:
1) coordinate of the common reference location in the target SRF, computed from the source

reference location coordinate.
2) target orientation with respect to LTFT.

It is invoked as follows:

 target_SRF->transformOrientationCommonOrigin (

source_ref_coord, /* input, Coord3D */
source_orientation, /* input, Orientation */
target_ref_coord, /* output, Coord3D */
target_orientation); /* output, Orientation */

6.4 Examples
The following examples show how to transform orientations between the various SRFs discussed
in Section 4.

6.4.1 Transform Between Range SRFs
Example 1: Transform the orientation of an aircraft in axis-angle form with respect to the Range
1 SRF to the Range 2 SRF, also in axis-angle form. As shown in Figure 6-4, the axes of the two
Range SRFs are not parallel. Therefore, the orientation of the aircraft with respect to the Range
1 SRF is different from its orientation with respect to the Range 2 SRF.

1) Create the SRF object for the Range 1 SRF (see Section 4.2.1).
2) Create the SRF object for the Range 2 SRF (see Section 4.2.1).
3) Create the source Orientation object that relates the aircraft body axes (shown in blue in

Figure 6-4) to the axes of the Range 1 SRF (shown in green in Figure 6-4) in axis-angle
form. This orientation is shown as range1-to-bodyΩ in Figure 6-4.

 // From Range 1 (Axis-Angle) to Range 2 (Axis-Angle)
 SRM_Axis_Angle_Params aircraft_range1_axis_angle_params;
 SRM_Long_Float n1 = -0.43301270, n2 = 0.75, n3 = 0.5;

 aircraft_range1_axis_angle_params.axis.array[0] = n1;
 aircraft_range1_axis_angle_params.axis.array[1] = n2;

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

41

 aircraft_range1_axis_angle_params.axis.array[2] = n3;
 aircraft_range1_axis_angle_params.angle = 30.0 * degreesToRadians;

Figure 6-4. Orientation Transformation from Range 1 to Range 2

 OrientationAxisAngle aircraft_range1_orientation(
 aircraft_range1_axis_angle_params);

4) Obtain the Range 2 Orientation object using the transformOrientation (or

transformOrientationCommonOrigin) method of the Range 2 SRF. This method first
computes the Orientation object that relates the Range 1 SRF to the Range 2 SRF at the
specified reference coordinates, shown as range2-to-range1Ω in Figure 6-4. This is then composed

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

42

with the Range 1 Orientation object to create the Range 2 Orientation object. This
method requires a reference coordinate for each of the two SRFs. However, because the
Range SRFs are both linear, any convenient locations can be chosen. Suppose the current
Range 1 coordinate of the aircraft is chosen. The transformOrientationCommonOrigin
method can then be used to transform both the position and the orientation of the aircraft to
the Range 2 SRF at the same time.

 SRM_Long_Float aircraft_range1_x = 5000.0,
 aircraft_range1_y = 100000.0,
 aircraft_range1_z = 5000.0; // meters

 Coord3D* aircraft_range1_coord = Range1_SRF->createCoordinate3D(
 aircraft_range1_x,
 aircraft_range1_y,
 aircraft_range1_z);

 Coord3D* aircraft_range2_coord = Range2_SRF->createCoordinate3D(
 0.0, 0.0, 0.0);

 OrientationTaitBryanAngles aircraft_range2_orientation;

 Range2_SRF->transformOrientationCommonOrigin(
 *aircraft_range1_coord,
 aircraft_range1_orientation,
 *aircraft_range2_coord,
 aircraft_range2_orientation);

 SRM_Long_Float aircraft_range2_x, aircraft_range2_y, aircraft_range2_z;

 Range2_SRF->getCoordinate3DValues(*aircraft_range2_coord,
 aircraft_range2_x,
 aircraft_range2_y,
 aircraft_range2_z);

5) Retrieve the axis-angle representation of the Range 2 Orientation object.

 SRM_Axis_Angle_Params aircraft_range2_axis_angle_params =
 aircraft_range2_orientation.getAxisAngle();

 SRM_Long_Float aircraft_range2_axis_n1, aircraft_range2_axis_n2,
 aircraft_range2_axis_n3, aircraft_range2_axis_theta;

 aircraft_range2_axis_n1 =
 aircraft_range2_axis_angle_params.axis.array[0];
 aircraft_range2_axis_n2 =
 aircraft_range2_axis_angle_params.axis.array[1];
 aircraft_range2_axis_n3 =
 aircraft_range2_axis_angle_params.axis.array[2];
 aircraft_range2_axis_theta = aircraft_range2_axis_angle_params.angle;

6.4.2 Transform From Range to Geocentric
Example 2: Transform the orientation of a tank with respect to the Range 1 SRF in quaternion
form to the Geocentric WGS 1984 SRF in Euler angle form.

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

43

1) Create the SRF object for the Range 1 SRF (see Section 4.2.1).
2) Create the SRF object for the Geocentric WGS 1984 SRF (see Section 4.1.2).
3) Create the source Orientation object that relates the tank body axes to the axes of the

Range 1 SRF in quaternion form.

 // From Range 1 (Quaternion) to Geocentric (Euler Angle)
 SRM_Quaternion_Params tank_range1_quaternion_params;

 tank_range1_quaternion_params.e0 = 0.96607316; // real
 tank_range1_quaternion_params.e1 = -0.11195108; // i
 tank_range1_quaternion_params.e2 = 0.19376985; // j
 tank_range1_quaternion_params.e3 = 0.12892965; // k

 OrientationQuaternion tank_range1_orientation(
 tank_range1_quaternion_params);

4) Obtain the Geocentric WGS 1984 Orientation object using the transformOrientation

(or transformOrientationCommonOrigin) method of the Geocentric WGS 1984 SRF. This
method first computes the Orientation object that relates the Range 1 SRF to the
Geocentric WGS 1984 SRF at the specified reference coordinates. This is then composed
with the Range 1 Orientation object to create the Geocentric WGS 1984 Orientation
object. This method requires a reference coordinate for each of the two SRFs. Because the
Range 1 SRF and the Geocentric WGS 1984 SRF are both linear, any convenient locations
can be chosen. Suppose the current Range 1 coordinate of the tank is chosen. The
transformOrientationCommonOrigin method can then be used to transform both the
position and the orientation of the tank to the Geocentric WGS 1984 SRF at the same time.

 SRM_Long_Float tank_range1_x = 2000.0,
 tank_range1_y = 5000.0,
 tank_range1_z = 500.0; // meters

 Coord3D* tank_range1_coord = Range1_SRF->createCoordinate3D(
 tank_range1_x,
 tank_range1_y,
 tank_range1_z);

 Coord3D* tank_geocentric_coord =
 Geocentric_WGS84_SRF->createCoordinate3D(0.0, 0.0, 0.0);

 OrientationEulerAnglesZXZ tank_geocentric_orientation;

 Geocentric_WGS84_SRF->transformOrientationCommonOrigin(
 *tank_range1_coord,
 tank_range1_orientation,
 *tank_geocentric_coord,
 tank_geocentric_orientation);

 SRM_Long_Float tank_geocentric_x, tank_geocentric_y, tank_geocentric_z;

 Geocentric_WGS84_SRF->getCoordinate3DValues(*tank_geocentric_coord,
 tank_geocentric_x,
 tank_geocentric_y,
 tank_geocentric_z);

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

44

5) Retrieve the Euler angle representation of the Geocentric WGS 1984 Orientation object.

 SRM_Euler_Angles_ZXZ_Params tank_euler_angle_params =
 tank_geocentric_orientation.getEulerAnglesZXZ();

 SRM_Long_Float tank_alpha = tank_euler_angle_params.spin;
 SRM_Long_Float tank_beta = tank_euler_angle_params.nutation;
 SRM_Long_Float tank_gamma = tank_euler_angle_params.precession;

6.4.3 Transform From Range to Geodetic
Example 3: Transform the orientation of a tank with respect to the Range 1 SRF in 3x3 matrix
form to the Geodetic WGS 1984 SRF in Tait-Bryan angle form.

1) Create the SRF object for the Range 1 SRF (see Section 4.2.1).
2) Create the SRF object for the Geodetic WGS 1984 SRF (see Section 4.1.1).
3) Create the source Orientation object that relates the tank body axes to the axes of the

Range 1 SRF in 3x3 matrix form.

 // From Range 1 (3x3 Matrix) to Geodetic (Tait-Bryan)
 SRM_Matrix_3x3 tank_range1_matrix = {
 0. 0.89114923, -0.29350295, 0.34598999,
 0.20648575, 0.94138810, 0.26674346,
 -0.40400085, -0.16626623, 0.89952146 };

 OrientationMatrix tank_range1_orientation(tank_range1_matrix);

4) Obtain the Geodetic WGS 1984 Orientation object, using the transformOrientation (or

transformOrientationCommonOrigin) method of the Geodetic WGS 1984 SRF. This
method first computes the Orientation object that relates the Range 1 SRF to the Geodetic
WGS 1984 SRF at the specified reference coordinates. This is then composed with the
Range 1 Orientation object to create the Geodetic WGS 1984 Orientation object. This
requires a reference coordinate for each of the two SRFs. In this case, because the Range 1
SRF is a linear SRF, any convenient location can be chosen for the Range 1 reference
coordinate. However, because the Geodetic WGS 1984 SRF is a curvilinear SRF, an
appropriate and relevant location should be chosen as the geodetic reference coordinate.
Suppose the current Range 1 coordinate of the tank is chosen as the reference coordinate for
the Range 1 SRF, and the Geodetic WGS 1984 coordinate of the tank is chosen as the
reference coordinate for the Geodetic WGS 1984 SRF. This defines a Local Tangent Space
Euclidean SRF with its origin located at the current position of the tank. The
transformOrientationCommonOrigin method can then be used to transform both the
position and the orientation of the tank to the Geodetic WGS 1984 SRF at the same time.

 SRM_Long_Float tank_range1_x = 2000.0,
 tank_range1_y = 5000.0,
 tank_range1_z = 500.0; // meters

 Coord3D* tank_range1_coord = Range1_SRF->createCoordinate3D(
 tank_range1_x,
 tank_range1_y,
 tank_range1_z);

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

45

 Coord3D* tank_geodetic_coord = Geodetic_WGS84_SRF->createCoordinate3D(
 0.0, 0.0, 0.0);

 OrientationTaitBryanAngles tank_geodetic_orientation;

 Geodetic_WGS84_SRF->transformOrientationCommonOrigin(
 *tank_range1_coord,
 tank_range1_orientation,
 *tank_geodetic_coord,
 tank_geodetic_orientation);

 SRM_Long_Float tank_geodetic_longitude,
 tank_geodetic_latitude,
 tank_geodetic_ellipsoid_height;

 Geodetic_WGS84_SRF->getCoordinate3DValues(*tank_geodetic_coord,
 tank_geodetic_longitude,
 tank_geodetic_latitude,
 tank_geodetic_ellipsoid_height);

5) Retrieve the Tait-Bryan angle representation of the Geodetic WGS 1984 Orientation

object.

 SRM_Tait_Bryan_Angles_Params tank_tait_bryan_angle_params =
 tank_geodetic_orientation.getTaitBryanAngles();

 SRM_Long_Float tank_psi = tank_tait_bryan_angle_params.roll;
 SRM_Long_Float tank_theta = tank_tait_bryan_angle_params.pitch;
 SRM_Long_Float tank_phi = tank_tait_bryan_angle_params.yaw;

6.4.4 Transform From Geodetic to Geocentric
Example 4: Transform the orientation of an aircraft with respect to the Geodetic WGS 1984 SRF
in Tait-Bryan angle form to the Geocentric WGS 1984 SRF in Euler angle form.

1) Create the SRF object for the Geodetic WGS 1984 SRF (see Section 4.1.1).
2) Create the SRF object for the Geocentric WGS 1984 SRF (see Section 4.1.2).
3) Create the Geodetic WGS 1984 Orientation object that relates the aircraft body axes to the

axes of the Geodetic WGS 1984 SRF in Tait-Bryan angle form.

 // From Geodetic (Tait-Bryan) to Geocentric (Euler Angle)
 SRM_Tait_Bryan_Angles_Params aircraft_geodetic_tait_bryan_params;

 aircraft_geodetic_tait_bryan_params.roll = 30.0 * degreesToRadians;
 aircraft_geodetic_tait_bryan_params.pitch = 30.0 * degreesToRadians;
 aircraft_geodetic_tait_bryan_params.yaw = 120.0 * degreesToRadians;

 OrientationTaitBryanAngles aircraft_geodetic_orientation(
 aircraft_geodetic_tait_bryan_params);

4) Obtain the Geocentric WGS 1984 Orientation object, using the transformOrientation

method of the Geocentric WGS 1984 SRF. This method first computes the Orientation
object that relates the Geodetic WGS 1984 SRF to the Geocentric WGS 1984 SRF at the

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

46

specified reference coordinates. This is then composed with the Geodetic WGS 1984
Orientation object to create the Geocentric WGS 1984 Orientation object. This requires
a reference coordinate for each of the two SRFs. In this case, because the Geodetic WGS
1984 SRF is a curvilinear SRF, an appropriate and relevant location should be chosen as the
geodetic reference coordinate. Suppose the Geodetic WGS 1984 coordinate of the aircraft is
chosen as the geodetic reference coordinate. This defines a Local Tangent Space Euclidean
SRF with its origin located at the current position of the aircraft. However, because the
Geocentric WGS 1984 SRF is a linear SRF, any convenient location can be chosen as the
geocentric reference coordinate. Suppose the geocentric origin is chosen.

 SRM_Long_Float aircraft_longitude = -120.5 * degreesToRadians,
 aircraft_latitude = 33.5 * degreesToRadians,
 aircraft_ellipsoidal_height = 5000; // meters

 Coord3D* geodetic_ref_coord = Geodetic_WGS84_SRF->createCoordinate3D(
 aircraft_longitude,
 aircraft_latitude,
 aircraft_ellipsoidal_height);

 Coord3D* geocentric_ref_coord = Geocentric_WGS84_SRF->createCoordinate3D(
 0.0, 0.0, 0.0);

 OrientationEulerAnglesZXZ aircraft_geocentric_orientation;

 Geocentric_WGS84_SRF->transformOrientation(
 *geodetic_ref_coord,
 aircraft_geodetic_orientation,
 *geocentric_ref_coord,
 aircraft_geocentric_orientation);

5) Retrieve the Euler angle representation of the Geocentric WGS 1984 Orientation object.

 SRM_Euler_Angles_ZXZ_Params aircraft_euler_angle_params =
 aircraft_geocentric_orientation.getEulerAnglesZXZ();

 SRM_Long_Float aircraft_alpha = aircraft_euler_angle_params.spin;
 SRM_Long_Float aircraft_beta = aircraft_euler_angle_params.nutation;
 SRM_Long_Float aircraft_gamma = aircraft_euler_angle_params.precession;

6.4.5 Transform From Geodetic to Range
Example 5: Transform the orientation of an aircraft with respect to the Geodetic WGS 1984 SRF
in Tait-Bryan angle form to the Range 2 SRF in quaternion form.

1) Create the SRF object for the Geodetic WGS 1984 SRF (see Section 4.1.1).
2) Create the SRF object for the Range 2 SRF (see Section 4.2.1).
3) Create the Geodetic WGS 1984 Orientation object that relates the aircraft body axes to the

axes of the Geodetic WGS 1984 SRF in Tait-Bryan angle form.

 // From Geodetic (Tait-Bryan) to Range 2 (Quaternion)
 SRM_Tait_Bryan_Angles_Params aircraft_geodetic_tait_bryan_params;

 aircraft_geodetic_tait_bryan_params.roll = 30.0 * degreesToRadians;

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

47

 aircraft_geodetic_tait_bryan_params.pitch = 30.0 * degreesToRadians;
 aircraft_geodetic_tait_bryan_params.yaw = 120.0 * degreesToRadians;

 OrientationTaitBryanAngles aircraft_geodetic_orientation(
 aircraft_geodetic_tait_bryan_params);

4) Obtain the Range 2 Orientation object, using the TransformOrientation method of the

Range 2 SRF. This method first computes the Orientation object that relates the Geodetic
WGS 1984 SRF to the Range 2 SRF at the specified reference coordinates. This is then
composed with the Geodetic WGS 1984 Orientation object to create the Range 2
Orientation object. This requires a reference coordinate for each of the two SRFs. In this
case, because the Geodetic WGS 1984 SRF is a curvilinear SRF, an appropriate and relevant
location should be chosen as the geodetic reference coordinate. Suppose the Geodetic WGS
1984 coordinate of the aircraft is chosen. This defines a Local Tangent Space Euclidean SRF
with its origin located at the current position of the aircraft. However, because the Range 2
SRF is a linear SRF, any convenient location can be chosen as the Range 2 reference
coordinate. Suppose the Range 2 origin is chosen.

 SRM_Long_Float aircraft_longitude = -120.5 * degreesToRadians,
 aircraft_latitude = 33.5 * degreesToRadians,
 aircraft_ellipsoidal_height = 5000; // meters

 Coord3D* geodetic_ref_coord = Geodetic_WGS84_SRF->createCoordinate3D(
 aircraft_longitude,
 aircraft_latitude,
 aircraft_ellipsoidal_height);

 Coord3D* range2_ref_coord = Range2_SRF->createCoordinate3D(
 0.0, 0.0, 0.0);

 OrientationQuaternion aircraft_range2_orientation;

 Range2_SRF->transformOrientation(
 *geodetic_ref_coord,
 aircraft_geodetic_orientation,
 *range2_ref_coord,
 aircraft_range2_orientation);

5) Retrieve the quaternion representation of the Range 2 Orientation object.

 SRM_Quaternion_Params aircraft_quaternion_params =
 aircraft_range2_orientation.getQuaternion();

 SRM_Long_Float aircraft_e0 = aircraft_quaternion_params.e0;
 SRM_Long_Float aircraft_e1 = aircraft_quaternion_params.e1;
 SRM_Long_Float aircraft_e2 = aircraft_quaternion_params.e2;
 SRM_Long_Float aircraft_e3 = aircraft_quaternion_params.e3;

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

48

7 Vector Quantities
This section addresses the transformation of vector quantities from one spatial reference frame to
another, including linear velocity, angular velocity, linear acceleration, and angular acceleration.

7.1 Concepts
The concepts of linear velocity, angular velocity, linear acceleration, and angular acceleration are
briefly reviewed in this subsection.

Figure 7-1. Linear Velocity

7.1.1 Linear Velocity
Linear velocity is the time rate of change of displacement (i.e., change of position), or the
derivative of displacement with respect to time, of a particle or rigid body. Linear velocity is a
vector, which consists of both a direction and a magnitude, i.e., speed. Linear velocity is
commonly symbolized as v. Figure 7-1 shows the current position of an aircraft, its linear
velocity vector (shown in red), and its projected position after a time interval (shown as a
“ghost” of the aircraft). The instantaneous linear velocity, which specifies the linear velocity of
the particle or rigid body at a specific point in time, is the limit as the length of the interval
approaches zero. The units for linear velocity are typically meters per second (m/sec).

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

49

Figure 7-2. Angular Velocity

7.1.2 Angular Velocity
Angular velocity is the time rate of rotation, or the derivative of rotation with respect to time, of
a particle or a rigid body about an axis. Angular velocity is a vector, with magnitude equal to the
angular speed at which the body is rotating, and which points in the direction of the axis of
rotation. The direction of rotation about the axis is specified by the right hand rule. Angular
velocity is commonly symbolized as ω (lower case omega). Figure 7-2 shows the angular
velocity of an aircraft as it rotates about an arbitrary axis, shown in red, over a time interval. The
future position of the aircraft is shown in the form of a “ghost” aircraft. The orientation Ω
specifies the relationship between the current and future aircraft body axes. The tangential
velocity vector v shows the linear velocity of a point on the nose of the aircraft, which is located
a distance r from the axis of rotation. The orange arc shows the actual path of this point, within a
plane perpendicular to the axis of rotation, shown in blue, as the aircraft rotates. The units for
angular velocity are typically radians per second (rad/sec).

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

50

Figure 7-3. Linear Acceleration

7.1.3 Linear Acceleration
Linear acceleration is the time rate of change of linear velocity, or the derivative of linear
velocity with respect to time, of a particle or rigid body. Linear acceleration is a vector. It is
commonly symbolized as a. Figure 7-3 shows the change in the linear velocity of an aircraft,
over the course of a brief time interval, Δt. The vector v0 is the current linear velocity vector.
The vector a is the current linear acceleration vector. Its components are also shown, in green.
The future position of the aircraft is shown as a “ghost” aircraft. The vector vΔt is an
approximation of its future linear velocity vector, given by vΔt ≅ v0 + (Δt * a). The
instantaneous linear acceleration, which specifies the linear acceleration at a specific point in
time, is the limit as the length of the time interval approaches zero. The units for linear
acceleration are typically meters per second squared (m/sec2).

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

51

Figure 7-4. Angular Acceleration

7.1.4 Angular Acceleration
Angular acceleration is the time rate of change of angular velocity, or the derivative of angular
velocity with respect to time, of a particle or rigid body. Angular acceleration is a vector. It is
commonly symbolized as α (lower case alpha)6. Figure 7-4 shows the change in the angular
velocity of an aircraft, as it rotates about an arbitrary axis, over the course of a time interval. The
future position of the aircraft is shown in the form of a “ghost” aircraft. The orientation Ω
specifies the relationship between the current and future aircraft body axes. The tangential (at)
and normal (an) components of the angular acceleration show how the velocity of a point on the
nose of the aircraft, located a distance r from the axis of rotation, changes over time. The orange
arc shows the actual path of this point, within a plane perpendicular to the axis of rotation, shown
in blue, as the aircraft rotates. The units for angular acceleration are typically radians per second
squared (rad/sec2).

6 The angular acceleration vector α should not be confused with the azimuth angle α used in section 4.2.1.

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

52

7.2 Representation
Several quantities associated with a particle or rigid body, including linear velocity, angular
velocity, linear acceleration, and angular acceleration, can be represented as 3D vectors. In the
SRM API, such 3D vectors are instantiated using the data type Vector_3D_Params:

 typedef struct
 {
 SRM_Long_Float array[3];
 } SRM_Vector_3D;

The three components of this vector represent the three components of the linear velocity,
angular velocity, linear acceleration, or angular acceleration along each of the coordinate axes of
the appropriate SRF, in order.

The vector transformation operations in the SRM do not require the units of a given vector
quantity, since the units are not affected by any vector transformation operations.

7.3 Transformation Procedure
The general procedure for transforming one or more vector quantities from one SRF to another
is:
1) Create the source SRF object, as shown in Section 4.
2) Create the target SRF object, as shown in Section 4.
3) Transform the vector(s) from the source SRF to the target SRF using the transformVector

method (or one of its alternative forms) of the target SRF.

The four variations of the transformVector method are described below.

7.3.1 Transform Vector
Given a vector in the local tangent frame (LTFS) associated with a reference location in the
source SRF, the method transformVector computes the vector in the local tangent frame
(LTFT) associated with the specified reference location in the target SRF. The output vector is
computed by applying the orientation of LTFS with respect to LTFT to the source vector. The
invoking SRF is the target SRF.

This method takes 3 input parameters:
1) source reference location (a coordinate in the source SRF) where the origin of LTFS is located.

(In the C++ and Java implementations, the source SRF is implied by the source reference
location.)

2) source vector in LTFS.
3) target reference location (a coordinate in this SRF, the target SRF) where the origin of LTFT is

located.

This method computes 1 output parameter:
1) target vector in LTFT.

It is invoked as follows:

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

53

 target_SRF->transformVector (
source_ref_coord, /* input, Coord3D */
source_vector, /* input, Vector_3D */
target_ref_coord, /* input, Coord3D */
target_vector); /* output, Vector_3D */

7.3.2 Transform Vector with Common Origin
Given a vector in the local tangent frame (LTFS) associated with a reference location in the
source SRF, the method transformVectorCommonOrigin computes the vector in the local
tangent frame (LTFT) associated with the specified reference location in the target SRF. LTFS
and LTFT have a common origin. The output vector is computed by applying the orientation of
LTFS with respect to LTFT to the source vector. The invoking SRF is the target SRF.

This method takes 2 input parameters:
1) source reference location (a coordinate in the source SRF) where the origin of LTFS is located.

(In the C++ and Java implementations, the source SRF is implied by the source reference
location.)

2) source vector in LTFS.

This method computes 2 output parameters:
1) coordinate of the common reference location in the target SRF, computed from the source

reference location coordinate.
2) target vector in LTFT.

It is invoked as follows:

 target_SRF->transformVectorCommonOrigin (

source_ref_coord, /* input, Coord3D */
source_vector, /* input, Vector_3D */
target_ref_coord, /* output, Coord3D */
target_vector); /* output, Vector_3D */

7.3.3 Transform Vector in Body Frame
Given a vector in a body frame (or in general any linear reference frame, denoted by L), and
given the orientation of this body frame with respect to a local tangent frame (LTFS), the method
transformVectorInBodyFrame computes the representation of the vector with respect to
another local tangent frame (LTFT), where LTFS is the local tangent frame associated with the
source SRF at the specified source reference location, and LTFT is the local tangent frame
associated with the target SRF at the specified target reference location. The output vector is
computed by applying the composed orientation, from the orientation of LTFS with respect to
LTFT with the source orientation, to the source vector. This method is equivalent to applying the
orientation result from the transformOrientation method to the source vector. The invoking
SRF is the target SRF.

This method takes 4 input parameters:

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

54

1) source reference location (a coordinate in the source SRF) where the origin of LTFS is located.
(In the C++ and Java implementations, the source SRF is implied by the source reference
location.)

2) source orientation of some linear reference frame L with respect to LTFS.
3) source vector in the linear reference frame L.
4) target reference location (a coordinate in this SRF, the target SRF) where the origin of the

target local tangent frame (LTFT) is located.

This method computes 1 output parameter:
1) target vector in LTFT.

It is invoked as follows:

 target_SRF->transformVectorInBodyFrame (

source_ref_coord, /* input, Coord3D */
source_orientation, /* input, Orientation */
source_vector, /* input, Vector_3D */
target_ref_coord, /* input, Coord3D */
target_vector); /* output, Vector_3D */

7.3.4 Transform Vector in Body Frame with Common Origin
Given a vector in a body frame (or in general any linear reference frame, denoted by L), and
given the orientation of this body frame with respect to a local tangent frame (LTFS), the method
transformVectorInBodyFrameCommonOrigin computes the representation of the vector with
respect to another local tangent frame (LTFT), where LTFS is the local tangent frame associated
with the source SRF at the specified source reference location, and LTFT is the local tangent
frame associated with the target SRF at the specified target reference location. LTFS and LTFT
have a common origin. The output vector is computed by applying the composed orientation,
from the orientation of LTFS with respect to LTFT with the source orientation, to the source
vector. This method is equivalent to applying the orientation result from the
transformOrientationCommonOrigin method to the source vector. The invoking SRF is the
target SRF.

This method takes 3 input parameters:
1) source reference location (a coordinate in the source SRF) where the origin of LTFS is located.

(In the C++ and Java implementations, the source SRF is implied by the source reference
location.)

2) source orientation of some linear reference frame L with respect to LTFS.
3) source vector in the linear reference frame L.

This method computes 2 output parameters:
1) coordinate of the common reference location in the target SRF, computed from the source

reference location coordinate.
2) target vector in LTFT.

It is invoked as follows:

 target_SRF->transformVectorInBodyFrameCommonOrigin (

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

55

source_ref_coord, /* input, Coord3D */
source_orientation, /* input, Orientation */
source_vector, /* input, Vector_3D */
target_ref_coord, /* output, Coord3D */
target_vector); /* output, Vector_3D */

7.4 Examples
The following examples show how to transform vector quantities between the various SRFs
defined in Section 4.

Figure 7-5. Vector Transformation from Range 1 to Range 2

7.4.1 Transform Between Range SRFs
Example 1: Given the linear velocity v, with components (vx, vy, vz), angular velocity ω, with
components (ωx, ωy, ωz), linear acceleration a (with components, (ax, ay, az), and angular
acceleration α, with components (αx, αy, αz) of an aircraft, expressed with respect to the Range 1
SRF, transform these four vector quantities to the Range 2 SRF.

As shown in Figure 7-5, the corresponding axes of the two Range SRFs, shown in green and
yellow, respectively, are not parallel to one another. Thus, the component values of a vector
quantity v associated with the aircraft, representing, for example, its velocity with respect to the
Range 1 SRF, are different from the corresponding component values of the same vector with

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

56

respect to the Range 2 SRF. The figure makes this clear by translating the vector v, shown in
blue, from the aircraft center of mass to the origins of each of the two Range SRFs, and showing
the components of the vector, in green, with respect to each set of axes.

1) Create the SRF object for the Range 1 SRF (see Section 4.2.1).
2) Create the SRF object for the Range 2 SRF (see Section 4.2.1).
3) Transform the vectors from the Range 1 SRF to the Range 2 SRF using the

transformVector method of the Range 2 SRF object. This requires a reference coordinate
for each of the two SRFs. Because the Range SRFs are both linear, any convenient locations
can be chosen as the reference coordinates. Suppose the origins of the Range 1 and Range 2
SRFs, respectively, are chosen.

 // From Range 1 to Range 2
 Coord3D* range1_ref_coord = Range1_SRF->createCoordinate3D(
 0.0, 0.0, 0.0);

 Coord3D* range2_ref_coord = Range2_SRF->createCoordinate3D(
 0.0, 0.0, 0.0);

 // Aircraft linear velocity vector with respect to Range 1
 // (200 m/sec ahead):
 SRM_Vector_3D aircraft_range1_velocity;

 aircraft_range1_velocity.array[0] = 200.0 * -0.4330127; // m/sec
 aircraft_range1_velocity.array[1] = 200.0 * 0.75; // m/sec
 aircraft_range1_velocity.array[2] = 200.0 * 0.5; // m/sec

 SRM_Vector_3D aircraft_range2_velocity;

 Range2_SRF->transformVector(
 *range1_ref_coord,
 aircraft_range1_velocity,
 *range2_ref_coord,
 aircraft_range2_velocity);

 // Aircraft angular velocity vector with respect to Range 1
 // (1 degree/sec clockwise roll):
 SRM_Vector_3D aircraft_range1_angular_velocity;

 aircraft_range1_angular_velocity.array[0] =
 1.0 * degreesToRadians * -0.4330127; // radians/sec
 aircraft_range1_angular_velocity.array[1] =
 1.0 * degreesToRadians * 0.75; // radians/sec
 aircraft_range1_angular_velocity.array[2] =
 1.0 * degreesToRadians * 0.5; // radians/sec

 SRM_Vector_3D aircraft_range2_angular_velocity;

 Range2_SRF->transformVector(
 *range1_ref_coord,
 aircraft_range1_angular_velocity,
 *range2_ref_coord,
 aircraft_range2_angular_velocity);

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

57

 // Aircraft linear acceleration vector with respect to Range 1
 // (10 m/sec**2 ahead):
 SRM_Vector_3D aircraft_range1_acceleration;

 aircraft_range1_acceleration.array[0] = 10.0 * -0.4330127; // m/sec^2
 aircraft_range1_acceleration.array[1] = 10.0 * 0.75; // m/sec^2
 aircraft_range1_acceleration.array[2] = 10.0 * 0.5; // m/sec^2

 SRM_Vector_3D aircraft_range2_acceleration;

 Range2_SRF->transformVector(
 *range1_ref_coord,
 aircraft_range1_acceleration,
 *range2_ref_coord,
 aircraft_range2_acceleration);

 // Aircraft angular acceleration vector with respect to Range 1
 // (1 degree/sec**2 clockwise roll):
 SRM_Vector_3D aircraft_range1_angular_acceleration;

 aircraft_range1_angular_acceleration.array[0] =
 1.0 * degreesToRadians * -0.4330127; // radians/sec^2
 aircraft_range1_angular_acceleration.array[1] =
 1.0 * degreesToRadians * 0.75; // radians/sec^2
 aircraft_range1_angular_acceleration.array[2] =
 1.0 * degreesToRadians * 0.5; // radians/sec^2

 SRM_Vector_3D aircraft_range2_angular_acceleration;

 Range2_SRF->transformVector(
 *range1_ref_coord,
 aircraft_range1_angular_acceleration,
 *range2_ref_coord,
 aircraft_range2_angular_acceleration);

7.4.2 Transform From Range to Geocentric
Example 2: Transform the linear velocity, linear acceleration, angular velocity, and angular
acceleration vectors of a tank expressed with respect to the Range 1 SRF to the Geocentric WGS
1984 SRF.

1) Create the SRF object for the Range 1 SRF (see Section 4.2.1).
2) Create the SRF object for the Geocentric WGS 1984 SRF (see Section 4.1.2).
3) Transform the vectors from the Range 1 SRF to the Geocentric WGS 1984 SRF using the

transformVector method of the Geocentric WGS 1984 SRF object. This requires a
reference coordinate for each of the two SRFs. Because the Range 1 SRF and the Geocentric
WGS 1984 SRF are both linear, any convenient locations can be chosen as the reference
coordinates. Suppose the origin of the Range 1 SRF, and the origin of the Geocentric WGS
1984 SRF, are chosen.

 // From Range 1 to Geocentric
 Coord3D* range1_ref_coord = Range1_SRF->createCoordinate3D(
 0.0, 0.0, 0.0);

 Coord3D* geocentric_ref_coord = Geocentric_WGS84_SRF->createCoordinate3D(

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

58

 0.0, 0.0, 0.0);

 // Tank linear velocity vector with respect to Range 1
 // (20 m/sec ahead):
 SRM_Vector_3D tank_range1_velocity;

 tank_range1_velocity.array[0] = 20.0 * 0.25; // m/sec
 tank_range1_velocity.array[1] = 20.0 * 0.9330127; // m/sec
 tank_range1_velocity.array[2] = 20.0 * 0.25881905; // m/sec

 SRM_Vector_3D tank_geocentric_velocity;

 Geocentric_WGS84_SRF->transformVector(
 *range1_ref_coord,
 tank_range1_velocity,
 *geocentric_ref_coord,
 tank_geocentric_velocity);

 // Tank angular velocity vector with respect to Range 1
 // (1 degree/sec right turn):
 SRM_Vector_3D tank_range1_angular_velocity;

 tank_range1_angular_velocity.array[0] =
 1.0 * degreesToRadians * 0.25; // radians/sec
 tank_range1_angular_velocity.array[1] =
 1.0 * degreesToRadians * 0.9330127; // radians/sec
 tank_range1_angular_velocity.array[2] =
 1.0 * degreesToRadians * 0.25881905; // radians/sec

 SRM_Vector_3D tank_geocentric_angular_velocity;

 Geocentric_WGS84_SRF->transformVector(
 *range1_ref_coord,
 tank_range1_angular_velocity,
 *geocentric_ref_coord,
 tank_geocentric_angular_velocity);

 // Tank linear acceleration vector with respect to Range 1
 // (-0.2 m/sec**2 ahead):
 SRM_Vector_3D tank_range1_acceleration;

 tank_range1_acceleration.array[0] = -0.2 * 0.25; // m/sec^2
 tank_range1_acceleration.array[1] = -0.2 * 0.9330127; // m/sec^2
 tank_range1_acceleration.array[2] = -0.2 * 0.25881905; // m/sec^2

 SRM_Vector_3D tank_geocentric_acceleration;

 Geocentric_WGS84_SRF->transformVector(
 *range1_ref_coord,
 tank_range1_acceleration,
 *geocentric_ref_coord,
 tank_geocentric_acceleration);

 // Tank angular acceleration vector with respect to Range 1
 // (-0.1 degree/sec right turn):
 SRM_Vector_3D tank_range1_angular_acceleration;

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

59

 tank_range1_angular_acceleration.array[0] =
 -0.1 * degreesToRadians * 0.25; // radians/sec^2
 tank_range1_angular_acceleration.array[1] =
 -0.1 * degreesToRadians * 0.9330127; // radians/sec^2
 tank_range1_angular_acceleration.array[2] =
 -0.1 * degreesToRadians * 0.25881905; // radians/sec^2

 SRM_Vector_3D tank_geocentric_angular_acceleration;

 Geocentric_WGS84_SRF->transformVector(
 *range1_ref_coord,
 tank_range1_angular_acceleration,
 *geocentric_ref_coord,
 tank_geocentric_angular_acceleration);

7.4.3 Transform From Range to Geodetic
Example 3: Transform the linear velocity, linear acceleration, angular velocity, and angular
acceleration vectors of a tank expressed with respect to the Range 1 SRF to the Geodetic WGS
1984 SRF.

1) Create the SRF object for the Range 1 SRF (see Section 4.2.1).
2) Create the SRF object for the Geodetic WGS 1984 SRF (see Section 4.1.1).
3) Transform the vectors from the Range 1 SRF to the Geodetic WGS 1984 SRF using the

transformVector method of the Geodetic WGS 1984 SRF object. This requires a
reference coordinate for each of the two SRFs. In this case, because the Range 1 SRF is a
linear SRF, any convenient location can be chosen as the Range 1 reference coordinate.
However, because the Geodetic WGS 1984 SRF is a curvilinear SRF, an appropriate and
relevant location should be chosen as the geodetic reference coordinate. Suppose the origin
of the Range 1 SRF is chosen as the reference coordinate for the Range 1 SRF, and is then
converted to the Geodetic WGS 1984 SRF.

 // From Range 1 to Geodetic
 Coord3D* range1_ref_coord = Range1_SRF->createCoordinate3D(
 0.0, 0.0, 0.0);

 Coord3D* geodetic_ref_coord = Geodetic_WGS84_SRF->createCoordinate3D(
 0.0, 0.0, 0.0);

 SRM_Coordinate_Valid_Region region = Geodetic_WGS84_SRF-
>changeCoordinate3DSRF(
 *range1_ref_coord,
 *geodetic_ref_coord);

 // Tank linear velocity vector with respect to Range 1
 // (15 m/sec ahead):
 SRM_Vector_3D tank_range1_velocity;

 tank_range1_velocity.array[0] = 15.0 * 0.25; // m/sec
 tank_range1_velocity.array[1] = 15.0 * 0.9330127; // m/sec
 tank_range1_velocity.array[2] = 15.0 * 0.25881905; // m/sec

 SRM_Vector_3D tank_geodetic_velocity;

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

60

 Geodetic_WGS84_SRF->transformVector(
 *range1_ref_coord,
 tank_range1_velocity,
 *geodetic_ref_coord,
 tank_geodetic_velocity);

 // Tank angular velocity vector with respect to Range 1
 // (1 degree/sec left turn):
 SRM_Vector_3D tank_range1_angular_velocity;

 tank_range1_angular_velocity.array[0] =
 -1.0 * degreesToRadians * 0.25; // radians/sec
 tank_range1_angular_velocity.array[1] =
 -1.0 * degreesToRadians * 0.9330127; // radians/sec
 tank_range1_angular_velocity.array[2] =
 -1.0 * degreesToRadians * 0.25881905; // radians/sec

 SRM_Vector_3D tank_geodetic_angular_velocity;

 Geodetic_WGS84_SRF->transformVector(
 *range1_ref_coord,
 tank_range1_angular_velocity,
 *geodetic_ref_coord,
 tank_geodetic_angular_velocity);

 // Tank linear acceleration vector with respect to Range 1
 // (0.1 m/sec**2 ahead):
 SRM_Vector_3D tank_range1_acceleration;

 tank_range1_acceleration.array[0] = 0.1 * 0.25; // m/sec^2
 tank_range1_acceleration.array[1] = 0.1 * 0.9330127; // m/sec^2
 tank_range1_acceleration.array[2] = 0.1 * 0.25881905; // m/sec^2

 SRM_Vector_3D tank_geodetic_acceleration;

 Geodetic_WGS84_SRF->transformVector(
 *range1_ref_coord,
 tank_range1_acceleration,
 *geodetic_ref_coord,
 tank_geodetic_acceleration);

 // Tank angular acceleration vector with respect to Range 1
 // (0.1 degree/sec left turn):
 SRM_Vector_3D tank_range1_angular_acceleration;

 tank_range1_angular_acceleration.array[0] =
 -0.1 * degreesToRadians * 0.25; // radians/sec^2
 tank_range1_angular_acceleration.array[1] =
 -0.1 * degreesToRadians * 0.9330127; // radians/sec^2
 tank_range1_angular_acceleration.array[2] =
 -0.1 * degreesToRadians * 0.25881905; // radians/sec^2

 SRM_Vector_3D tank_geodetic_angular_acceleration;

 Geodetic_WGS84_SRF->transformVector(
 *range1_ref_coord,
 tank_range1_angular_acceleration,

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

61

 *geodetic_ref_coord,
 tank_geodetic_angular_acceleration);

7.4.4 Transform From Geodetic to Geocentric
Example 4: Transform the linear velocity, linear acceleration, angular velocity, and angular
acceleration vectors of an aircraft expressed with respect to the Geodetic WGS 1984 SRF to the
Geocentric WGS 1984 SRF.

1) Create the SRF object for the Geodetic WGS 1984 SRF (see Section 4.1.1).
2) Create the SRF object for the Geocentric WGS 1984 SRF (see Section 4.1.2).
3) Transform the vectors from the Geodetic WGS 1984 SRF to the Geocentric WGS 1984 SRF

using the transformVector method of the Geocentric WGS 1984 SRF object. Note that the
entity state vectors for the Geodetic WGS 1984 SRF are specified in terms of the local
tangent framedefined by the reference coordinate at the current position of the aircraft. This
requires a reference coordinate for each of the two SRFs. In this case, because the Geodetic
WGS 1984 SRF is a curvilinear SRF, an appropriate and relevant location should be chosen
as the geodetic reference coordinate. Suppose the Geodetic WGS 1984 coordinate of the
aircraft is chosen. This defines a local tangent frame with its origin located at the current
position of the aircraft. Because the Geocentric WGS 1984 SRF is a linear SRF, any
convenient location can be chosen as the geocentric reference coordinate. Suppose the
geocentric origin is chosen as the geocentric reference coordinate.

 // From Geodetic to Geocentric
 SRM_Long_Float aircraft_longitude = -120.5 * degreesToRadians,
 aircraft_latitude = 33.5 * degreesToRadians,
 aircraft_ellipsoidal_height = 5000.0; // meters

 Coord3D* geodetic_ref_coord = Geodetic_WGS84_SRF->createCoordinate3D(
 aircraft_longitude,
 aircraft_latitude,
 aircraft_ellipsoidal_height);

 Coord3D* geocentric_ref_coord = Geocentric_WGS84_SRF->createCoordinate3D(
 0.0, 0.0, 0.0);

 // Aircraft linear velocity vector with respect to Geodetic WGS84 SRF
 // (200 m/sec northeast):
 SRM_Vector_3D aircraft_geodetic_velocity;

 aircraft_geodetic_velocity.array[0] = 200.0 * 0.70710678; // m/sec
 aircraft_geodetic_velocity.array[1] = 200.0 * 0.70710678; // m/sec
 aircraft_geodetic_velocity.array[2] = 200.0 * 0.0; // m/sec

 SRM_Vector_3D aircraft_geocentric_velocity;

 Geocentric_WGS84_SRF->transformVector(
 *geodetic_ref_coord,
 aircraft_geodetic_velocity,
 *geocentric_ref_coord,
 aircraft_geocentric_velocity);

 // Aircraft angular velocity vector with respect to Geodetic WGS84 SRF

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

62

 // (1 degree/sec right turn):
 SRM_Vector_3D aircraft_geodetic_angular_velocity;

 aircraft_geodetic_angular_velocity.array[0] =
 -1.0 * degreesToRadians * 0.0; // radians/sec
 aircraft_geodetic_angular_velocity.array[1] =
 -1.0 * degreesToRadians * 0.0; // radians/sec
 aircraft_geodetic_angular_velocity.array[2] =
 -1.0 * degreesToRadians * 1.0; // radians/sec

 SRM_Vector_3D aircraft_geocentric_angular_velocity;

 Geocentric_WGS84_SRF->transformVector(
 *geodetic_ref_coord,
 aircraft_geodetic_angular_velocity,
 *geocentric_ref_coord,
 aircraft_geocentric_angular_velocity);

 // Aircraft linear acceleration vector with respect to Geodetic WGS84 SRF
 // (10 m/sec**2 ahead):
 SRM_Vector_3D aircraft_geodetic_acceleration;

 aircraft_geodetic_acceleration.array[0] = 10.0 * 0.70710678; // m/sec^2
 aircraft_geodetic_acceleration.array[1] = 10.0 * 0.70710678; // m/sec^2
 aircraft_geodetic_acceleration.array[2] = 10.0 * 0.0; // m/sec^2

 SRM_Vector_3D aircraft_geocentric_acceleration;

 Geocentric_WGS84_SRF->transformVector(
 *geodetic_ref_coord,
 aircraft_geodetic_acceleration,
 *geocentric_ref_coord,
 aircraft_geocentric_acceleration);

 // Aircraft angular acceleration vector with respect to Geodetic WGS84
 // SRF (1 degree/sec**2 right turn):
 SRM_Vector_3D aircraft_geodetic_angular_acceleration;

 aircraft_geodetic_angular_acceleration.array[0] =
 -1.0 * degreesToRadians * 0.0; // radians/sec^2
 aircraft_geodetic_angular_acceleration.array[1] =
 -1.0 * degreesToRadians * 0.0; // radians/sec^2
 aircraft_geodetic_angular_acceleration.array[2] =
 -1.0 * degreesToRadians * 1.0; // radians/sec^2

 SRM_Vector_3D aircraft_geocentric_angular_acceleration;

 Geocentric_WGS84_SRF->transformVector(
 *geodetic_ref_coord,
 aircraft_geodetic_angular_acceleration,
 *geocentric_ref_coord,
 aircraft_geocentric_angular_acceleration);

7.4.5 Transform From Aircraft Body Frame to Range 1
Example 5: Transform the linear velocity, linear acceleration, angular velocity, and angular
acceleration vectors of an aircraft from the aircraft’s body frame to the Range 1 SRF. It is

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

63

assumed that, at any given instant in time, the orientation of the aircraft body frame with respect
to the Range 1 SRF, 1BodyToRangeΩ , can be computed to sufficient accuracy using the information
provided by the inertial systems on the aircraft. The inertial systems provide aircraft orientation
information in the form of a set of Tait-Bryan angles, i.e., roll, pitch, and yaw. It is further
assumed that the aircraft inertial systems have been calibrated to the Range 1 origin local North
and local “up” directions.

This example uses an alternative to the transformation procedure given in Section 7.3. This
alternative procedure does not require the source SRF, which is the aircraft’s body frame, to be
explicitly defined.

1) Create the orientation object for the aircraft body frame with respect to test Range 1 SRF (see

Section 6.2).

Given the assumptions above, this can be accomplished in three stages. First, an orientation
object is created that represents the orientation of the aircraft body frame with respect to the
“calibration frame” of its inertial systems. This is accomplished using the Tait-Bryan roll, pitch,
and yaw angles reported by the inertial systems:

 SRM_Tait_Bryan_Angles_Params aircraft_tait_bryan_params;

 aircraft_tait_bryan_params.roll = 5.0 * degreesToRadians;
 aircraft_tait_bryan_params.pitch = -5.0 * degreesToRadians;
 aircraft_tait_bryan_params.yaw = 90.0 * degreesToRadians;

 OrientationTaitBryanAngles orientation_body_to_calibration(
 aircraft_tait_bryan_params);

In the calibration frame, the aircraft x-axis points toward local North and the z-axis points toward
local down, while the test Range 1 x-axis points toward local East and the z-axis points toward
local up. A second orientation object that represents the orientation of the calibration frame with
respect to test Range 1 can therefore be created as follows:

 // From Aircraft Body Frame to Range 1
 SRM_Matrix_3x3 matrix_params_calibration_to_range1 = {
 0.0, 1.0, 0.0,
 1.0, 0.0, 0.0,
 0.0, 0.0, -1.0};

 OrientationMatrix orientation_calibration_to_range1(
 matrix_params_calibration_to_range1);

These two orientation objects, representing orientation of the aircraft body frame with respect to
the calibration frame, and the orientation of the calibration frame with respect to the Range 1
SRF, can now be composed to form the orientation of the aircraft body frame with respect to the
Range 1 SRF:

 OrientationMatrix orientation_body_to_range1 =
 OrientationMatrix::compose(orientation_calibration_to_range1,
 orientation_body_to_calibration);

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

64

2) Transform the vectors from the aircraft’s body frame to the Range 1 SRF using the
transformVector method of the orientation object resulting from step 2 above. This
method transforms a vector quantity from the source SRF of the orientation object (i.e., the
aircraft’s body frame) to its target SRF (i.e., the Range 1 SRF). Note that because this
orientation object captures the relationship between the aircraft body frame and the Range 1
SRF, the actual SRF objects are not needed to perform this transformation.

 // Aircraft body velocity vector (100 m/sec ahead):
 SRM_Vector_3D aircraft_body_velocity;

 aircraft_body_velocity.array[0] = 100.0; // m/sec
 aircraft_body_velocity.array[1] = 0.0; // m/sec
 aircraft_body_velocity.array[2] = 0.0; // m/sec

 SRM_Vector_3D aircraft_range1_velocity =
 orientation_body_to_range1.transformVector(
 aircraft_body_velocity);

 // Aircraft body angular velocity vector
 // (2 degrees/sec clockwise roll):
 SRM_Vector_3D aircraft_body_angular_velocity;

 aircraft_body_angular_velocity.array[0] =
 2.0 * degreesToRadians * 1.0; // radians/sec
 aircraft_body_angular_velocity.array[1] =
 2.0 * degreesToRadians * 0.0; // radians/sec
 aircraft_body_angular_velocity.array[2] =
 2.0 * degreesToRadians * 0.0; // radians/sec

 SRM_Vector_3D aircraft_range1_angular_velocity =
 orientation_body_to_range1.transformVector(
 aircraft_body_angular_velocity);

 // Aircraft body acceleration vector
 // (5 m/sec ahead; 1 m/sec upward):
 SRM_Vector_3D aircraft_body_acceleration;

 aircraft_body_acceleration.array[0] = 5.0; // m/sec^2
 aircraft_body_acceleration.array[1] = 0.0; // m/sec^2
 aircraft_body_acceleration.array[2] = -1.0; // m/sec^2

 SRM_Vector_3D aircraft_range1_acceleration =
 orientation_body_to_range1.transformVector(
 aircraft_body_acceleration);

 // Aircraft body angular acceleration vector
 // (+0.1 degrees/sec**2 clockwise roll):
 SRM_Vector_3D aircraft_body_angular_acceleration;

 aircraft_body_angular_acceleration.array[0] =
 0.1 * degreesToRadians * 1.0; // radians/sec^2
 aircraft_body_angular_acceleration.array[1] =
 0.1 * degreesToRadians * 0.0; // radians/sec^2
 aircraft_body_angular_acceleration.array[2] =
 0.1 * degreesToRadians * 0.0; // radians/sec^2

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

65

 SRM_Vector_3D aircraft_range1_angular_acceleration =
 orientation_body_to_range1.transformVector(
 aircraft_body_angular_acceleration);

7.4.6 Transform From Aircraft Body Frame to Range 2
Example 6: Transform the linear velocity, linear acceleration, angular velocity, and angular
acceleration vectors of the aircraft in the previous example from the aircraft’s body frame to the
Range 2 SRF. The inertial systems on the aircraft were calibrated with respect to local North and
up at the Range 1 origin. These directions differ from local North and up at the Range 2 origin.
The orientation 1BodyToRangeΩ computed in the previous example can be used in this case to directly
transform vector quantities in the aircraft body frame to the Range 2 SRF using the
transformVectorInBodyFrame method.

1) Create the SRF object for the Range 1 SRF (see Section 4.2.1).
2) Compute the orientation object for the aircraft body frame with respect to the Range 1 SRF
(see example 5).
3) Create the SRF object for the Range 2 SRF (see Section 4.2.1).
4) Transform the vectors from the aircraft's body frame to the Range 2 SRF using the
transformVectorInBodyFrame method of the Range 2 SRF object. This method uses the
orientation of the aircraft body frame with respect to the Range 1 SRF as a parameter. This
method also requires a reference coordinate for each of the two Range SRFs. Because the Range
SRFs are both linear, any convenient locations can be chosen as the reference coordinates.
Suppose the origins of the Range 1 and Range 2 SRFs, respectively, are chosen.

 // From Aircraft Body Frame to Range 2
 Coord3D* range1_ref_coord = Range1_SRF->createCoordinate3D(
 0.0, 0.0, 0.0);

 Coord3D* range2_ref_coord = Range2_SRF->createCoordinate3D(
 0.0, 0.0, 0.0);

 SRM_Tait_Bryan_Angles_Params aircraft_tait_bryan_params;

 aircraft_tait_bryan_params.roll = 5.0 * degreesToRadians;
 aircraft_tait_bryan_params.pitch = -5.0 * degreesToRadians;
 aircraft_tait_bryan_params.yaw = 90.0 * degreesToRadians;

 OrientationTaitBryanAngles orientation_body_to_calibration(
 aircraft_tait_bryan_params);

 SRM_Matrix_3x3 matrix_params_calibration_to_range1 = {
 0.0, 1.0, 0.0,
 1.0, 0.0, 0.0,
 0.0, 0.0, -1.0};

 OrientationMatrix orientation_calibration_to_range1(
 matrix_params_calibration_to_range1);

 OrientationMatrix orientation_body_to_range1 =
 OrientationMatrix::compose(orientation_calibration_to_range1,
 orientation_body_to_calibration);

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

66

 // Aircraft body vector quantities, with values as in Example 5

 // Aircraft body velocity vector (100 m/sec ahead):
 SRM_Vector_3D aircraft_body_velocity;

 aircraft_body_velocity.array[0] = 100.0; // m/sec
 aircraft_body_velocity.array[1] = 0.0; // m/sec
 aircraft_body_velocity.array[2] = 0.0; // m/sec

 // Aircraft body angular velocity vector
 // (2 degrees/sec clockwise roll):
 SRM_Vector_3D aircraft_body_angular_velocity;

 aircraft_body_angular_velocity.array[0] =
 2.0 * degreesToRadians * 1.0; // radians/sec
 aircraft_body_angular_velocity.array[1] =
 2.0 * degreesToRadians * 0.0; // radians/sec
 aircraft_body_angular_velocity.array[2] =
 2.0 * degreesToRadians * 0.0; // radians/sec

 // Aircraft body acceleration vector
 // (5 m/sec ahead; 1 m/sec upward):
 SRM_Vector_3D aircraft_body_acceleration;

 aircraft_body_acceleration.array[0] = 5.0; // m/sec^2
 aircraft_body_acceleration.array[1] = 0.0; // m/sec^2
 aircraft_body_acceleration.array[2] = -1.0; // m/sec^2

 // Aircraft body angular acceleration vector
 // (+0.1 degrees/sec**2 clockwise roll):
 SRM_Vector_3D aircraft_body_angular_acceleration;

 aircraft_body_angular_acceleration.array[0] =
 0.1 * degreesToRadians * 1.0; // radians/sec^2
 aircraft_body_angular_acceleration.array[1] =
 0.1 * degreesToRadians * 0.0; // radians/sec^2
 aircraft_body_angular_acceleration.array[2] =
 0.1 * degreesToRadians * 0.0; // radians/sec^2

 SRM_Vector_3D aircraft_range2_velocity;

 Range2_SRF->transformVectorInBodyFrame(
 *range1_ref_coord,
 orientation_body_to_range1,
 aircraft_body_velocity,
 *range2_ref_coord,
 aircraft_range2_velocity);

 SRM_Vector_3D aircraft_range2_angular_velocity;

 Range2_SRF->transformVectorInBodyFrame(
 *range1_ref_coord,
 orientation_body_to_range1,
 aircraft_body_angular_velocity,
 *range2_ref_coord,
 aircraft_range2_angular_velocity);

SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009

67

 SRM_Vector_3D aircraft_range2_acceleration;

 Range2_SRF->transformVectorInBodyFrame(
 *range1_ref_coord,
 orientation_body_to_range1,
 aircraft_body_acceleration,
 *range2_ref_coord,
 aircraft_range2_acceleration);

 SRM_Vector_3D aircraft_range2_angular_acceleration;

 Range2_SRF->transformVectorInBodyFrame(
 *range1_ref_coord,
 orientation_body_to_range1,
 aircraft_body_angular_acceleration,
 *range2_ref_coord,
 aircraft_range2_angular_acceleration);

To transform vector quantities from the aircraft body frame to Geocentric, substitute
Geocentric_WGS84_SRF for Range2_SRF in this example.

An alternate method to realize example 6 is to transform the orientation 1BodyToRangeΩ to be with
respect to Range 2 and then use the methods of example 5. In particular, 2BodyToRangeΩ may be
computed with:

 Orientation* orientation_body_to_range2 = new OrientationMatrix ();
 Range2_SRF->transformOrientation (

*range1_ref_coord,
*orientation_body_to_range1,
*range2_ref_coord,
*orientation_body_to_range2);

