Overview of Stores Concept

by�Dr. Richard F. Puk�Intelligraphics Incorporated

Introduction

To solve difficulties in creating language bindings for the C programming language, ISO/IEC JTC 1/SC 24 developed a mechanism which satisfies several criteria for managing memory:

The application should have overall control of when memory is allocated and deallocated.

The application should not need to have knowledge about the exact size of memory which needs to be allocated for information being returned by the implementation.

Allocation and ownership of allocated memory should be either with the application or with the implementation.

The mechanism used is called the store. This document contains an extraction from ISO/IEC 9593-4:1991, the PHIGS Binding to the C Programming Language. This is followed with a discussion of how this same concept would be used in the SEDRIS Binding to the C Programming Language.

Use within PHIGS

Overview

When PHIGS was designed, it was decided that whatever could be set in the PHIGS state information could also be inquired. This resulted in a very large number of inquiry functions being defined. Many of these functions return information whose size is unknown at the time that the information is requested by the application. The remainder of Section 2 contains an extract from the PHIGS standard which describes the PHIGS C Binding store mechanism. PHIGS also standardized an alternate mechanism which allowed simple lists of information to be returned. This is not described in this document since users of PHIGS have found that the store mechanism could have been used also for returning such simple lists in a manner more straightforward than the mechanism standardized.

Normative definition of the PHIGS C Binding Store Mechanism

The following information is from clause 3.9 of ISO/IEC 9593-4:

“3.9 Memory management

The application shall allocate the memory needed for the data returned by the implementation. In general, the application will allocate a C structure and pass a pointer to that structure to an inquiry routine which will then place information into the structure. However, a number of inquiry functions return variable length data, the length of which is not known a priori by the application.

These functions fall into two classes. One class of functions returns a simple, homogeneous list of elements. [ed. Not needed by SEDRIS hence clause 3.9.1 omitted below]. The other class returns complex, heterogeneous data structures. For example, the function INQUIRE LOCATOR DEVICE STATE returns the device state which includes a locator data record; the data record can contain arbitrarily complex implementation-defined data structures. The binding of these two classes of functions is described in detail below.

Additional binding-specific errors which relate to memory management are described in 3.11.3.”

The following information is from clause 3.9.2 of ISO/IEC 9593-4:

“3.9.2 Inquiry functions which return complex data structures

The data returned by the element content functions and the functions which return input device data records can be complex in structure. It would be an onerous task for the application to allocate and to prepare data structures for these routines. In order to facilitate the task of using these inquiry functions, the binding defines a new resource, called a Store, to manage the memory for these functions.

A Store is used by the implementation to manage the memory needed by the functions which return complex data structures. The Store resource is opaque to the applicafion. The application does not know the structure of the Store or how it is implemented. The Store is defined as a void *. The binding defines two new functions which create (CREATE STORE, bound as pcreate_store) and destroy (DELETE STORE, bound as pdel_store) a Store.

The semantics of the Store resource provide two levels of memory management. The implementation is responsible for managing the memory at a low level because it uses, reuses, allocates and deallocates memory from the system in order to return information to the application. But the application is ultimately responsible for managing the memory at a high level because it creates and destroys Stores.

A Store is passed as a parameter to a function returning complex data. Another parameter to this function is a pointer to a pointer to a structure which defines the forrnat of the returned data. The Store contains memory for the structure and any additional memory referenced by fields within the structure. The application accesses the returned data through its pointer to the structure, it does not use the Store to access the data.

For some functions, a Store is used to manage the memory for two or more distinct complex data structures. For example, in the function INQUIRE PICK DEVICE STATE, the Store manages the memory for the pick filter, the initial pick path, and the pick data record, all of which are returned to the application.

A Store continues to hold the information returned from the function until the Store is destroyed by the pdel_store function, or until the Store is used as an argument to a subsequent function which returns complex data. At that time, the old information is replaced with the new. Thus multiple calls to functions overwrite the contents of a Store. A Store only contains the results of the last function. An application may create more than one Store.

This binding defines two new errors that can occur when using or creating a Store; these errors are described in 3.11.3. For most functions using a Store, these and other errors are returned via the "error indicator" parameter. However, the functions RETRIEVE PATHS TO ANCESTORS, RETRIEVE PATHS TO DESCENDANTS and ESCAPE do not have an error indicator parameter. For these functions, the error reporting mechanism is used when an error is encountered. For these functions, the implementation shall, in addition to reporting the error, set the pointer to the returned data to NULL when an error occurs.

The definitions for the functions CREATE STORE and DELETE STORE follow:

CREATE STORE	(PHOP, *, *, *)

Parameters:

OUT	error indicator	I�OUT	store	STORE

Effect:	Creates a Store and returns a handle to it in the parameter store. If the Store cannot be created, the store parameter is set to NULL and the error indicator is set to one of the following error numbers:

002	Ignoring function, function requires state (PHOP, *, *, *)�2203	Ignoring function, error allocating Store

Errors:	none

DELETE STORE	(PHOP, *, *, *)

Parameters:

OUT	error indicator	I�INOUT	store	STORE

Effect:	Deletes the Store and all internal resources associated with iL The parameter store is set to NULL to signify that it is no longer valid. If an error is detected, the error indicator is set to the following error number:

002	Ignoring function, function requires state (PHOP, *, *, *)

Errors:	none”

Example usage of the PHIGS C Binding Store Mechanism

The following information is from Annex D of ISO/IEC 9593-4:

“D.3 Functions that return complex data structures

The auxiliary parameter store is used by functions which return complex data structures. The store parameter is a pointer to an implementation defined structure which the implementation uses to manage (that is, allocate and deaflocate) the memory needed for returning information to the application.

This memory management policy is illustrated for the execution of the functions pinq_stroke_st and pinq_pat_rep. The sample program is in table D.2.

Table D-2 - Sample program of the memory management policy for complex data structures

�

D.3.1 Operation of pcreate_store

The function pcreate_store allocates a store and returns a pointer to it to the application. At the start of a call, the parameters to this function have undefined values as illustrated in figure D.4.

�

Figure D.4. Values of parameters of pcreate_store at start of call

As the result of a call, the implementation allocates the implementation store. The parameter store points to this memory; see figure D.5. After this, the implementation returns control to the application.

If the store cannot be allocated, the implementation returns abnormally to the application with the error indicator set to 2203.

�

Figure D.5. Values of parameters of pcreate_store at end of successful call

D.3.2 Operation of pinq_stroke_st and pinq_pat_rep

In the example program, there are two stores created, store_1 and store_2, and they are used in pinq_stroke_st and pinq_pat_rep, respectively. Two different stores are used to illustrate two uses of a store: pinq_stroke_st places two pieces of information (the stroke data and the initial stroke) into a single store; while pinq_pat_rep just places the pattern representation to a store. The same store could have been used in both functions but the sample program uses two to simplify the example.

The following steps take place.

1)	The application calls pinq_stroke_st. The values of the relevant parameters are illustrated in figure D.6.

2)	As a result of this call, the implementation places the information in the output parameters. The memory for the stroke data record and the initial stroke is managed by store_1. The addresses of the stroke data record and initial stroke are placed in the output parameters *stroke_data and *init_stroke, respectively. Figure D.7 illustrates this step.

	If the implementation cannot allocate enough memory to hold the stroke data record and the initial stroke, error number 2204 is retumed via the error indicator and the call of pinq_stroke_st ends abnormally.

3)	The application calls pinq_pat_rep. The values of the relevant parameters are illustrated in figure D.8.

4)	As a result of call, the implementation stores the information in the output parameters. The memory for the pattern representation is managed by store_2. The address of the pattern representation is placed in the output parameter *pat_rep. Figure D.9.

	If the implementation cannot allocate enough memory to hold the the pattern representation, error number 2204 is returned via the error indicator and the call of pinq_pat_rep ends abnormally.

�

Figure D.6 - Values of parameters of pinq stroke_st at start of call

�

Figure D.7 - Values of parameters of pinq_stroke_st at end of call

�

Figure D.8 - Values of parameters of pinq_pat_rep at start of call

�

Figure D.9 - Values of parameters of pinq_pat_rep at end of call

D.3.3 Operation of pdel_store

The function pdel_store frees all memory that has been allocated by pcreate_store and all subsequent functions using a store.

The following actions take place.

1)	The application calls pdel_store. The values of the parameters are illustrated in figure D.10.

2)	As a result of this call, the implementation deallocates all memory referenced by the parameter store; furthermore, the parameter store is set to NULL; see figure D.11.

	If the deallocation fails, pdel_store ends abnormally and the error indicator is given an implementation dependent value.

�

Figure D.10 - Values of parameters of pdel_store at start of call

�

Figure D.11 - Values of parameters of pdel_store at end of a successful call”

Application of Stores to SEDRIS

The stores mechanism minimizes the opportunities for memory leaks as well as insuring that the allocation and deallocation are under the control of the application program. In SEDRIS, variant information is often returned by the Read API functions. Part 1 of the SEDRIS standard defines many abstract data types which represent variant data structures. These data types are bound to the C programming language as taggest union structures of the form:

typedef struct {

	selector_type selector_name;

	union {

		union member definition for variant 1;

		union member definition for variant 2;

		. . .

		union member definition for variant n;

	} union_name;

} tagged_union_structure_name;

In the SEDRIS Binding to C, the two store management functions are:

	extern SE_StatusCode SE_CreateStore (SE_Store *store);�	extern SE_StatusCode SE_DeleteStore (SE_Store store);

Note that the errors are returned in the return value of the functions. The data type SE_Store is defined as a private type. Whether this is a pointer or a control structure can then be implementation dependent.

A typical example of the binding of a store in a SEDRIS Read API function is the following:

extern SE_StatusCode SE_GetFields (SE_SEDRISObject	object,�	SE_Store	store,�	SE_DataItemFields	**fields)

Note that the content of the fields for the specified SEDRIS object (i.e., a data item instance) is placed in the store and a pointer is returned in *fields which points to the tagget union structure containing the fields. The data_item_selector parameter (the first parameter in the tagged union structure) can be inspected to identify which union variant is to be used to retrieve the data. Retrievals will be of the form:

	content = fieldptr->union_name.field_name;

An important aspect of the store mechanism is that the application can create as many stores as is convenient for its purpose and can either reuse or delete them when he is finished with the content of any particular use of a store. Since stores usage is always bracketed by SE_CreateStore/SE_DeleteStore function calls, programs for testing the correctness of an application program can easily identify the occurrence of potential memory leaks.

In addition, the implementation is able to always optimize the amount of memory allocated since it can compute the exact space needed for each use of a store. This means that unnecessary allocations as well as unnecessarily large allocations can be avoided and the memory footprint of an execution can be optimized.

The initial draft of the SEDRIS C Binding will use the store mechanism. This will allow a more thorough analysis of its impact on the current SEDRIS implementation.

- � PAGE �1� -

