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Annex A
(normative)

Mathematical foundations

A.1 Introduction
This annex identifies the concepts from mathematics used in this International Standard and specifies the
notation used for those concepts. No proofs are presented. A reader of this International Standard is assumed

to be familiar with mathematics including set theory, linear algebra, and the calculus of several real variables
as presented in reference works such as the Encyclopedic Dictionary of Mathematics [EDM].

A.2 R" as a real vector space

An ordered set of » real numbers @ where » is a natural number is called an n-tuple of real numbers and shall
be denoted by a =(a1,a2,a3,---,an) The set of all n-tuples of real numbers is denoted by R”. R” is an »-

dimensional vector space.

The canonical basis for R” is defined as:
e, =(10,---0),¢,=(0,1--,0),--+ e, =(0,0,--+1).

n

The elements of R” may be called points or vectors. The latter term is used in the context of directions or
vector space operations.

The zero vector (0,0,---,0) is denoted by 0.

Definitions A.2(a) through A.2(j) apply to any vectors x = (x;,x,,--+x,) and y = (y, ¥, ¥

n

) inR"

a) The inner product or dot-product of two vectors x and y is defined as:
Xy =X +X, ), ++X,Y,.

b) Two vectors x and y are called orthogonal if xy=0.
c) Ifn>2, two vectors x and y are called perpendicular if and only if they are orthogonal.
NOTE1 Ifn>2, xey =|x||y|cos(a) where ais the angle between x and y.

d) xis called orthogonal to a set of vectors if x is orthogonal to each vector that is a member of the set.

e) The norm of x is defined as

[x|=vxex.

NOTE 2  The norm of x represents the length of the vector x. Only the zero vector 0 has norm zero.

f) xis called a unit vector if|| x| = 1.

g) A set of two or more orthogonal unit vectors is called an orthonormal set of vectors.

EXAMPLE The canonical basis is an example of an orthonormal set of vectors.
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h) The Euclidean metric d is defined by
d(x, y) = [lx —yll.

i) The value of d(x, y) is called the Euclidean distance between x and y.

j)  The cross product of two vectors x and y in R® is defined as the vector:
XX Y = (Xp)g = Xg Yy, XaVy = XyVa, XYy =X, ))

NOTE 3  The vector x x y is orthogonal to both x and y, and
ey = <[l v]sin(a).

where « is the angle between vectors x and y.

A.3 The point set topology of R"
Given a point p in R” and a real value &> 0, the set {g in R" | d(p, q) < £} is called the s-neighbourhood of p.
Given a set D « R” and a point p, the following terms are defined:

a) pis an interior point of D if at least one g-neighbourhood of p is a subset of D.
b) The interior of a set D is the set of all points that are interior points of D.
NOTE 1  The interior of a set may be empty.

c) D is open if each point of D is an interior point of D. Consequently, D is open if it is equal to its interior.

d) pis aclosure point of D if every e-neighbourhood of p has a non-empty intersection with D.
NOTE 2  Every member of D is a closure point of D.

e) The closure of a set D is the set of all points that are closure points of D.

f) Dis a closed set if it is equal to the closure set of D.

g) Aset D is replete if all points in D belong to the closure of the interior of D.

NOTE 3  Every open set is replete. The union of an open set with any or all of its closure points forms a replete set. In
particular, the closure of an open set is replete.

EXAMPLE 1 In R®{(x, y) | -t < x < m, —-1/2 < y < ©/2} is open and therefore replete.
EXAMPLE 2 {, ) | -n <x <7, -n/2 < y < n/2} is replete.

EXAMPLE 3 {(x,y) | -n <x <7, -n/2 < y < /2} is closed and replete.

A.4 Smooth functions on R”"

A real-valued function f defined on a replete domain in R" is called smooth if its first derivative exists and is
continuous at each point in its domain.

The gradient of f'is the vector of first order partial derivatives

of of of
rad(f)=| —,—,-—|.
grad({) (aw ov, 8vnj
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Definitions A.4(a) through A.4(g) apply to any vector-valued function F defined on a replete domain D in R"
with range in R"”.

a) The j’h-component function of a vector-valued function F is the real-valued function f; defined by
;= ejoF where ¢; is the /" canonical basis vector, j=1,2,--,m .

In this case:

F) = (1(v), £2(v), f5(v), ..., (V) fOr v = (v4, w2, v3, .., v) In D.

b) Fis called smooth if each component function fjis smooth.

c) The first derivative of a smooth vector-valued function F, denoted dF, evaluated at a point in the
domain is the n x m matrix of partial derivatives evaluated at the point:

9
(LJ i=12-nandj=12--m.
EY

d) The Jacobian matrix of F at the point v is the matrix of the first derivative of F.
NOTE 1  The rows of the Jacobian matrix are the gradients of the component functions of F.

e) In the case m = n, the Jacobian matrix is square and its determinant is called the Jacobian
determinant.

f) Inthe case m = n, F is called orientation preserving if its Jacobian determinant is strictly positive for all
points in D.

g) A vector-valued function F defined on R" is linear if:
F(ax + y) = aF(x) + F(p) for all real scalars a and vectors x and y in R”.

NOTE 2 All linear functions are smooth.

A vector-valued function E defined on R" is affine if F, defined by F(x)= E(x)- E(0), is a linear function. All
affine functions on R" are smooth.

A function may be alternatively called an operator especially when attention is focused on how the function
maps a set of points in its domain onto a corresponding set of points in its range.

EXAMPLE The localization operators (see 5.7).

A.5 Functional composition

If Fand G are two vector valued functions and the range of G is contained in the domain of F, then FoG , the
composition of F with G, is the function defined by FoG(x)= F(G(x)). F oG has the same domain as G,
and the range of F oG is contained in the range of F.

Functional composition also applies to scalar-valued functions f and g, If the range of g is contained in the
domain of £, then f o g(x), the composition of fwith g, is the function defined by fog(x)= f(g(x)).
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A.6 Smooth surfaces in R®

A.6.1 Implicit definition

A smooth surface in R® is implicitly specified by a real-valued smooth function /' defined on R® as the set S of
all points (x, y, z) in R® satisfying:

a) flx,y,z)=0and

b) grad(f)(x,y, z)=0.

In this case, f'is called a surface generating function for the surface S.

EXAMPLE 1 If n# 0 and p are vectors in R® and f{v) = n (v - p), then fis smooth and grad(f)=n = 0. The plane
which is perpendicular to n and contains p is the smooth surface implicitly defined by the surface generating function 1.

Special cases:

When n = (1, 0, 0) and p = 0, the yz-plane is implicitly defined.
When n = (0, 1, 0) and p = 0, the xz-plane is implicitly defined.
When n = (0, 0, 1) and p = 0, the xy-plane is implicitly defined.

The surface normal n at a point p = (x, y, z) on the surface implicitly specified by a surface generating function f
is defined as:

(p)” grad(1)(p).

"= "grad(f)

NOTE -nis also a surface normal to S at p. The surface generating function / determines the surface normal direction: n
or -n.

The tangent plane to a surface at a point p = (x, y, z) on the surface S implicitly defined by a surface generating
function f'is the plane which is the smooth surface implicitly defined by 4(v) = n e (v - p) where n is the surface
normal to S at p.

EXAMPLE 2 If a and b are positive non-zero scalars, define
2 2 2

X Yy
f(x,y,z)=?+?+ﬁ—1.
Then fis smooth and
2x 2y 2
grad(/)(x:2) - (25,2 %
a a b

is never (0, 0, 0) on the surface implicitly specified by the set satisfying /= 0.

A.6.2 Ellipsoid surfaces

If a and b are positive non-zero scalars, the smooth function:
x2 yZ ZZ
f(x,y,z) =?+?+?—1
is a surface generating function for an ellipsoid of revolution smooth surface S.

378 © ISO/IEC 2012 - All rights reserved



ISO/IEC 18026:2012(E)

When b < g, the surface is called an oblate ellipsoid. In this case « is called the major semi-axis32 of the oblate
ellipsoid and 5 is called the minor semi-axis of the oblate ellipsoid.

The flattening of an oblate ellipsoid is defined as /= (a - b)/a.

The eccentricity of an oblate ellipsoid is defined as & = 4/1- (b/a)2 .

The second eccentricity of an oblate ellipsoid is defined as &' = ,/(a/b)z -1.

When b = q, the oblate ellipsoid may be called a sphere of radius r = b = a.

When a < b, the surface is called a prolate ellipsoid. In this case, a is called the minor semi-axis of the prolate
ellipsoid and 5 is called the major semi-axis of the prolate ellipsoid.

NOTE 1 A sphere of radius r is also implicitly defined by the surface generating function 1 (x,y,z)=x*+y?+z% -,

NOTE 2 The term spheroid is often used to denote an oblate ellipsoid with an eccentricity close to zero (“almost
spherical”).

A.7 Smooth curves in R"
A.7.1 Parametric definition
A.7.1.1 Smooth curve

A smooth curve in R" is parametrically specified by a smooth one-to-one R” valued function F(r) defined on a
replete interval 7in R such that ||dF(¢)|| = O for any ¢ in 1.

EXAMPLE 1 If p and n are vectors in R” such that n # 0 and L) =p+tn, -o<t<+wo, then L is smooth and
|[dL()|] = ||n]] > O. The line which is parallel to n and which contains p is a smooth curve parametrically specified by L.

EXAMPLE 2 If a and b are positive non-zero scalars and b < a, define
F(f) = (acos(t), b sin(?)) for all ¢ in the interval -t < ¢ < .

Then Fis smooth and ||dF(?)|| > » > 0 for all ¢ in the interval and therefore parametrically specifies a smooth curve in R%.

An ellipse in R? with major semi-axis a and minor semi-axis b, 0 < b < a, is parametrically specified by:
F(f) = (acos(r), b sin(¢)), for all ¢ in the interval -n < ¢ < m.

A.7.1.2 Tangent to a smooth curve

If C(r) parametrically specifies a smooth curve C passing through a point p = C(#,), the tangent vector to C at p
shall be defined as:

-1 ac(s
r= “dC(tp) dC( p)

where dC(z,) = (dCq/dt, dCo/dy, ..., dCy/df) is the first derivative of C evaluated at .

NOTE  -tis also a tangent vector to C at p. The parameterization function C(f) determines the tangent vector direction: ¢
or -1.

32 4 is half the length of the major axis. 1ISO 19111 labels the symbol a as the semi-major axis.

© ISO/IEC 2012 — Al rights reserved 379



ISO/IEC 18026:2012(E)

A locus of points is a directed curve if it is the range of a smooth curve.

The tangent line to the curve C at p is a smooth curve parametrically specified by T(s) =p + s ¢, -0 <5 <+,
where ¢ is a tangent vector to C at p. See Figure A.1.

T(s) ™

Figure A.1 — Tangent to a curve

A.7.1.3 Angle between curves

If two parametrically specified smooth curves C; and C; intersect at a point p then the angle at p from C, to C,
is defined as the angle from the tangent vector ¢ to the tangent vector #, of the two curves, respectively, at p.
This is illustrated in Figure A.2.

Cq

Figure A.2 — Angle between two curves

If a smooth curve C passes through a non-polar point p on an ellipsoid and the meridian at p is parameterized
to start at the south pole and end at the north pole, then the azimuth of C at p is the clockwise angle at p from
the meridian to C.

A.7.1.4 Closed curve

If a smooth function F is defined on a closed and bounded interval 7 with interval end points 7, and ¢, and if F
parametrically specifies a smooth curve on the interior of 7 and p = F(t) = F(t,), then F generates a closed
curve through p.
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EXAMPLE
F(t) = (acos(f), b sin(?)), for all ¢in the interval -n+6 < t < n+6.

If « and b are positive non-zero scalars and @is given, F generates a closed curve though p = (a cos(n+6), b sin(n+6))

A.7.1.5 Surface curves, connected and orientable surfaces

If C is a smooth curve in R® parametrically specified by F on the interval I and if S is a smooth surface
generated by a surface generating function g, then C is a surface curve in Sif go F(t)=0 for all zin 1. In this

case C shall be said to lie in S.

EXAMPLE 1 If S'is a smooth surface with generating function g and if C(s) defines a surface curve in S which passes

through p = C(s,), then the tangent line to the curve at p, T(s) = p + s dC(t,), lies33 in the tangent plane to the surface S at p.
This is illustrated in Figure A.3.

Figure A.3 — Tangent plane to a surface
A smooth surface S is connected if for any two distinct points in S, there exists a smooth surface curve
parametrically specified by a smooth function defined on a bounded interval that lies in S and that contains the
two points on the curve.
A connected surface S is called an orientable surface if the normal vector at an arbitrary point p on S can be
continued in a unique and continuous manner to the entire surface. A normal vector at a fixed point p, may be
continued if there does not exist a closed curve C in S through p, such that the normal vector direction
reverses when it is displaced continuously from p, along C and back to pg.
An oriented surface is an orientable surface in which one side has been designated as positive.

EXAMPLE 2 If S is implicitly defined by /= 0, the side bounding the set satisfying /> 0 is designated as the positive
side.

EXAMPLE 3 A Mbbius strip is an example of a non-orientable surface.

NOTE If S is implicitly specified, it is an orientable surface34.

33 Since g OC(I) =0, the chain rule implies that grad(g)-dc = d(gOC(z))/d[ -0, so that n e dC = 0, where n is the surface
normal at p. 4(v) = n e (v — p) defines the tangent plane to the surface S at p.
h(T(s)) = h(p + st(tp)) =ne (p +sdC(1,)- p) =s(nedC) =0 so the tangent line lies in the tangent plane.

34 Since a surface generating function for S is smooth, its gradient is continuous. Therefore the surface normal will be a
continuous function of points on a curve that lies in S.
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A.7.2 Implicit definition

A smooth curve in R? may be implicitly specified by a real-valued smooth function f on R’ as the set S of all
points (x, y) in R? satisfying:

a) flx,y)=0and

b) grad(f)(x,y)= (0, 0).
In this case, f'is called a curve generating function for the curve C.

EXAMPLE If a and b are positive non-zero scalars, define

2 2
f(x,y)=%+%— )

Then fis smooth and

gt o) <[22

27 42
a b

is never (0, 0) on the curve /= 0.

If 0 <b<a, an ellipse in R? with major semi-axis a and minor semi-axis b, is implicitly specified by the curve
generating function defined by:

x2 2
f(x,y)=?+%— .

A.7.3 Arc length

If p = C(t,) and g = C(t,) are two points on a smooth surface curve defined by C and {, < t,, the arc length of the
curve segment with endpoints p and ¢ is defined by the quantity:

ﬁ [ldC(9)|| d ¢

A.7.4 Geodesics on an ellipsoid

There are several equivalent ways to define geodesics. This definition is specific to ellipsoids. Using the
surface geodetic coordinate system on an oblate ellipsoid, a smooth surface curve (/1(5),(p(s)) parameterized

by arc length s, is a geodesic if and only if it satisfies the following three differential equations:

dp _ cosa

ds  Ry(e)

dA sina

—=————and

ds  R(p)cose

da . dA
=sinp—,

ds ds

where « is the azimuth of the curve at the point (ﬂ(s),(p(s)), R is the radius of curvature in the meridian, and
Ry is the radius of curvature in the prime vertical (functions Ry and Ry are defined in Table 5.6.).

Every smooth surface curve in an oblate ellipsoid surface satisfies the first two equations. The third equation,

known in geodesy as Bessel's equation, is a necessary and sufficient condition for a smooth surface curve to
be a geodesic (see [RAPP1]).
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A.8 Special functions
A.8.1 Double argument arctangent function

The two argument form of inverse tangent, arctan2(y,x), returns a value adjusted by the quadrant of the point
(x,») . Given real numbers x and y,
arctan2(y,x) =46
where & is the unique value satisying
-n< @ <7, and

if r=0,
6 =0, else

if r>0,
x =rcosé, and
y=rsiné.

where:
r=qx?+ y2.
NOTE If x>0, then arctan2(y,x) = arctan(y/x) principal value. Some software implementation libraries reverse the

roles of x and y.

A.8.2 Jacobian elliptic functions

Jacobian elliptic functions are defined in terms of certain elliptic integrals. There are many equivalent
definitions, each involving special notation (see [ABST]). The notation used in this International Standard is
given here.

, d
|fu=f((p|8 )=gﬁ, and

¢=f"(ul&%)isits inverse,
the Jacobian elliptic functions used in this International Standard are defined by,
sn(u| &%) =sin(p),
cn(u|&*) =cos(p), and
dn(u|&?) = \[1-&%sin* (p)
where:
o=r"(uls).
Series expansions for these Jacobian elliptic functions are given in [ABST].

NOTE The complex functions sn(w |£2), cn(w |52) and dn(w |52) are called Jacobian elliptic functions in [ABST] and
[DOZI] and are called Jacobi functions in [LLEE].
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A.9 Projection function

A.9.1 Geometric projection functions into a developable surface

A projection function in R®is a smooth function defined on a connected replete domain in R® onto a surface in
the domain whose points are all fixed points of the function. Projection functions defined below project their
domain onto such a plane, cone, or cylinder surface and are classified as planar, conic, or cylindrical
projection functions according to the class of the fixed-point surface.

NOTE Some map projections CSs are unrelated to any geometric projection.
A.9.2 Planar projection functions

A.9.2.1 Orthographic projection function

Given a plane in R®, the domain of the orthographic projection function is either all of R® or the half space on
one side of (and including) the plane. Given a point x in the domain, if x is not in the plane, there is one line
that both passes through x and is perpendicular to the plane. If p is the point at the intersection of that line with
the plane, the projection F assigns the value p to x. That is F(x) = p. If the point x lies in the plane, F(x) = x so
that points in the plane are fixed points of the projection. In the case that the plane is the xy-plane, F(x, y, z)
= (x, y, 0). See Figure A 4.

Fx)=Fp)=p

Figure A.4 — Orthographic projection

A.9.2.2 Perspective projection function

Given a plane in R® and a point v (the vanishing point) not contained in the plane, the domain of the
perspective projection function is the set of all points of R® in the half space (including the plane) that does not
contain the point v. Given a point x in the domain, there is one line that passes through both x and v. If p is the
point at the intersection of the line with the plane, the projection F assigns the value p to x. That is F(x) = p.
Note that if point ¢ lies in the plane, F(q) = ¢ so that it is a fixed point of the projection. See Figure A.5.
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F(x)

Figure A.5 — Perspective projection
A.9.2.3 Stereographic projection function

Given a plane in R® and a point v not contained in the plane, the domain of the stereographic projection
function is the set of all points of R® in the half space on the point v side of (and including) the plane that are
closer to the plane than the distance of v to the plane. Given a point x in the domain, there is one line that
passes through both x and v. If p is the point at the intersection of the line with the plane, the projection F
assigns the value p to x. That is F(x) = p. Note that if point ¢ lies in the plane, F(q) = q so that it is a fixed point
of the projection. See Figure A.6.

Figure A.6 — Stereographic projection
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A.9.3 Cylindrical projection function

Given a cylinder and point v on its axis, a cylindrical projection function is defined on the domain R® excluding
the axis points as follows: Given a point x in the domain, there is one ray originating at v that passes through
x. If p is the point at the intersection of the ray with the cylinder surface, the projection F assigns the value p to
x. That is F(x) = p. Note that if point ¢ lies on the cylinder surface, F(q) = ¢ so that it is a fixed point of the
projection. See Figure A.7.

Figure A.7 — Cylindrical projection

A.9.4 Conic projection function
Given a (half) cone and point v on its axis inside the cone, a conic projection function projects a point x to the

point p where p is the intersection of the cone with the ray from v through x. The domain of this projection is
the union of all rays originating at v that intersects the cone and excluding the point v. See Figure A.8.

F(x)=Fp)=p

Figure A.8 — Conic projection
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A.10 Quaternion Algebra

Letp=d,+dji+d,j+d,k and g=e, +eji+e,j+e,k be two quaternions, and let + be a scalar. Quaternion
addition and scalar multiplication (in each notational convention) is defined as usual for 4D vector space:

p+iq=(d,+te))+(d, +te)i+(d, +te,)j+(d, +1e,)k [Hamiltion form]
=(d, +te,, d+te) [scalar vector form]

= (d0 +te,, d, +te, d, +te,, d, + tea) [4-tuple form]

Assuming associative multiplication, the quaternion axes relationships give the quaternion multiplication rule
(in each notational convention):

pq= (doeo —die, —d,e, - daes)
+(die, + doe, + dye, —dre, )i [Hamiltion form]
+(dye, +dye, +dye,—de,) j
+(dye, +dye, +die, —dye, )k
=((dye, —d o e),(e,d +dye+d xe)) [Scalar vector form]
(doeo - d1e1 - dzez - dses )‘
(cl1eO +d,e, +d,e, —d,e, ),
(dze0 +dye, +d,e, —de, ), [4-tuple form]
(dseo + does + d1e2 - dze1)
Quaternion multiplication is not commutative (note the cross product term in the scalar vector form is anti-
symmetric). However, the quaternion addition and multiplication operations together form an associative
algebra.
The conjugate of a quaternion ¢ is defined analogously with complex numbers:
q =ey—ei—e,j—ek [Hamiltion form]
=(g.—¢) [scalar vector form]

= (e, —¢;,—€,,—¢;)  [4-tuple form]
The product of a quaternion with its conjugate is "pure-real" and is called the norm of ¢:

* * 2 2 2 2
99 =qq=¢ te te +e [Hamiltion form]

=(g+ef +& +¢l, 0) [scalar vector form]

= (e§ v +es+é, 0,0, O) [4-tuple form]

The modulus of a quaternion is defined as the square root of the norm: |q| = \/qq" =/e) +¢’ +¢; +¢5 .

A quaternion ¢ is a unit quaternion if |¢|=1. In that case ¢q' =¢'q=1, which implies that for a unit
quaternion, its conjugate is its multiplicative inverse ¢ ' =¢q". More generally, the inverse of a (non-unit)

quaternion p is p' =2 =p—|2.

*

o |p
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