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6 Orientation

6.1 Introduction

The orientation of an object in space specifies how that object is aligned with respect to a reference
configuration of that object. The reference configuration is a conceptual copy of the object that is defined with
respect to a particular spatial reference frame. The orientation of the object may be specified by a distance
preserving transformation that would make the reference configuration congruent to the object. Only the
rotational components of this transformation are essential for the specification, as translation operations do
not affect alignment.

For computational purposes, an orthonormal set of axes is created and attached to the object. These axes are
termed the object axes. Another orthonormal set of axes is created and attached in the same manner to the
corresponding position of the reference configuration. These axes are termed the reference axes. An
orientation specification is a rotation operation that would bring the reference axes into alignment with the
corresponding object axes. (An alternative method of specification defines the inverse rotation operation, that
is, the rotation that would bring the object axes into alignment with the reference axes.) Only a single rotation
is required for such a specification, since, as a consequence of Euler's rotation theorem, a given series of
rotations is equivalent to a single rotation.

Rotation operator concepts and various mathematical representations of rotations have been in wide use from
before the time of Euler's work on the subject. As a result, there are many different treatments in the literature,
using similar terms with different meanings and different notational conventions. For this reason, rotation
terms and notation used in this International Standard are fully defined.

The specification of an ORM (see 7.4.4) depends on a similarity transformation (see 7.3.2) for which a rotation
operator is a key component. Converting the representation of such rotation operators to and from the Matrix
representation (see 6.4.2) is required for some change of SRF operations (see 10.3.2 and 10.4.5). Rotation
operators are also important in some of the application domains that fall within the scope of this International
Standard. This includes the ability to convert an object's orientation represented with respect to one SRF to its
equivalent with respect to another SRF.

6.2 Rotation operations and orientation

Euler’s rotation theorem states that any distance-preserving transformation of 3D space that has at least one
point fixed under the transformation is equivalent to a single rotation about an axis through an angle of
rotation. If the axis is assigned a direction, the angle of rotation can be specified as a positive angle or a
negative angle using the right-hand rule: conceptually, if the right-hand holds the axis with thumb pointing in
the direction of the vector, the fingers curl in the positive angle direction.

There are two conventions in use for specifying the angle of rotation. Either the angle is measured from the
starting position of a point to its rotated position, or it is measured from its rotated position to its starting
position. The first convention is the position vector rotation (PVR) convention, and the second convention is
the coordinate frame rotation (CFR) convention. Figure 6.1 illustrates the two conventions for a point r that is
rotated to a new position r' about an axis that is perpendicular to the plane of the figure.
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0 cpr= coordinate frame rotation

o VRS position vector rotation

Figure 6.1 — Rotation between r and r' in two conventions

If n is a unit vector spanning a directed rotation axis, R, (6) shall denote the rotation about the axis » through
angle 6 in PVR convention, and £, () shall denote the rotation about the axis n through angle ¢ in the CFR

convention. The two conventions are related as follows: R_,(0)=2,(0)=R,(-0). An orientation
specification for an object with respect to a reference shall be specified by either:

a) A rotation R, (0) in PVR convention that would rotate the object from the reference configuration to
align with the object configuration, or

b) A rotation £, (68) in CFR convention that would rotate the object from the object configuration to align
with the reference configuration.

The relationship of rotation operations (in a given rotation convention) and orientation specifications are
closely related, but is not one-to-one. The rotations R, (¢ +2nk), where k is any positive or negative integer

value, are distinct rotations that all correspond to the same orientation specification. Thus only the angle of
rotation modulo 27 determines orientation. The same holds for CFR convention €, (6 +2nk). Large rotations

(greater than one full revolution) are important in some applications, however, in this International Standard
angles shall be considered equivalent modulo 2x .

Two consecutive rotations result in a composite transformation that is also a rotation. In the PVR convention, if
a rotation R, (0) is followed by a second rotation R, (;o) , the composite rotation in right-to-left operator order

is R, (q)) °R, (0) . The composite rotation in the coordinate frame convention reverses the operator order:
2,(-0)°2,(-¢)=R,(¢)R,(0). (6.1)

If the orientation of an object E with respect to a reference E, is specified in PVR convention by R, , (or in CFR
convention QEDE) and if Fy is another reference and the orientation of E, with respect to Fy is known, the
orientation of E with respect to Fy is computed (in right-to-left operator order) as:

R, =R, >R, PVR convention (6.2)
‘QFOE = ‘QFOEO ° QEOE CFR convention
NOTE The order of the rotations is important because rotation operators are not commutative.
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6.3 Rodrigues’ rotation formula

The notion of a rotation about an axis though a given rotation angle is independent of any selection of a
Euclidean coordinate system (i.e., coordinate free). If a rotation operator Rn(e) in PVR convention rotates

point , the resulting rotated point #' may be computed using (coordinate free) vector space operations using
Rodrigues’ rotation formula (see [BERN]):

r' =cos(0)r+(1-cos(6))(r e n)n+sin(f)nxr (6.3)
The terms may be rearranged to the alternate form:

r'=r+(1-cos(8))nx(nxr)+sin(0)nxr (6.4)
This formulation also applies to the CFR convention operator 2, (—6).

6.4 Representations of Rotations

6.4.1 Representation degrees of freedom and computational complexity

A consequence of Euler’s rotation theorem is that any rotation operation on 3D Euclidean space has three
degrees of freedom and may be specified by three scalar numbers. That is explicitly the case with Euler angle
conventions (see 6.4.4.2).

Other less compact specifications using four or more scalars together with constraint rules are commonly used
because they are more amenable to some computations such as performing a rotation operation on a point,
composing rotations, interpolating rotations, and other operations and/or because these parameters can be
measured or modelled directly. The Matrix representation (see 6.4.2) and the Quaternion representation (see
6.4.5) are in common use because the rotation of a point and the composition of rotations are directly
computable as matrix or quaternion multiplications. Computing the composition of rotations in the Axis-angle
representation (see 6.4.3) or in an Euler angle convention (see 6.4.4) usually require conversion to and from
Matrix or Quaternion forms. All rotation representations defined below tacitly require an orthonormal basis for
the coordinate representation of vectors.

The various representation methods in prevalent use present different tradeoffs with respect to storage size,
computational complexity, speed, and error control. Thus the best representation is dependent on the
requirements and computational environment of a user application. For this reason, different representations
are in use and interoperability becomes an issue. This issue is compounded by the non-standard meaning of
terms in prevalent use. To support interoperability and SRM operations, this International Standard defines
these terms and identifies several representation methods as well as algorithms for key operations on and
inter-conversions between the representation methods.

6.4.2 Matrix representation

A 3x3 matrix M is a rotation matrix, if it satisfies these properties:

det(M) =1 (6.5)
MT _ M-1
Matrices satisfying these properties form an algebraic group with respect to matrix multiplication. This group is

known as the special orthogonal group of degree 3, SO(3). In particular, the product of any two rotation
matrices is itself a rotation matrix.

As a consequence of Euler's rotation theorem, the matrix has a unit eigenvector » and three eigenvalues:
1¢", e . The transformation is then a rotation of positive angle @ about the rotation axis spanned by the
vector n (the rotation axis points are fixed points under the transformation).
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If M=|a, a, a, |,acorresponding axis unitvector »n and angle of rotation & is algorithmically

a3y Q3 g

determined as follows:

Trace(M)-1 1
0= arccos[[&h = arccos[[(a“ +ay, + ;) JJ 0<h<r.

2 2

There are three cases for the computation of n that depend on the value of 4.
Case 6 =0: There is no rotation so n is indeterminate.

Case 0<@ <m: Let n:lv,where:

vl
Qyp — o3 .
v=|a,—a, |- Inthis case, | +|=2|sin(0)-

Ay = Ay

Case: 6 = n: First find the maximum diagonal element a,,, a,,, or a,; of R. Then:
. . T
Sub-case: a,, is the maximum and v = (a;, +1, ay, a;5) -
. . T
Sub-case: a,, is the maximum and v =(ay,, ay, +1, ay) -

) . . T
Sub-case: ay, is the maximum and v = (ay,, as,, a5 +1) .

Finally n = iv .
I+

In all cases, —nand -6 is also a solution.

The matrix M operates on 3D Euclidean space by either right or left matrix multiplication of vectors. The left
multiply operation r'=Mr corresponds to the PVR convention Rn(a). The right multiply operation
r=rM=M"r corresponds to the CFR convention !2,,(49). The product of two rotation matrices
corresponds to the composition of the two rotations.

NOTE 1 Matrix multiplication is generally not commutative.

NOTE 2 The matrix has nine parameters; however the constraints on the determinant and the transpose reduce the
degrees of freedom to three.

A special case of a rotation matrix arises from a change of basis operation. If r is a point in 3D Euclidean
space and E denotes that vector space with orthonormal basis x,y,z, and E’ denotes the same vector

space with orthonormal basis x',y’,z’ . The coordinate representation of r with respect to each basis is:
r=(r, r, ), where r=rx+ry+nrz,and

’ ’ IT .. [ !
r=(r nr, r),where r=rx'+ny +nrz.

The matrix M corresponding to the coordinate basis transformation from E to E' :(r,r,r) - (rnm,n) is
given by the direction cosine matrix:
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a, A Gy xex' yex' zex' (6.6)
M=|ay ay ay|=|xey yey' zey

a3 Q3 g xez' yez zeZ

NOTE 3  The direction cosine matrix is so named because each dot product in Equation (6.6) is the cosine of the angle
between the two indicated unit vectors.

The columns of the matrix are the x, y,z basis vectors in x',y’,z’ coordinate representation while the rows (or
columns of the transpose matrix) are the x',y’,z’ basis vectors in x,y,z coordinate representation. Thus the
transpose of the matrix corresponds to the inverse transformation (r,r;,7) - (1,7.7).

6.4.3 Axis-angle representation

The axis-angle representation (n, 0) is a coordinate system dependent representation of a PVR convention
rotation R,(6). It consists of a unit vector n=(n, n, n3)T and a rotation angle ¢. The corresponding
rotation in the CFR convention is @, (-6) = £, (0) . This representation uses four scalar parameters n,, n,, n,
and €. The unit constraint ||n|| =1 reduces the degrees of freedom to three. The axis-angle representation is

not unique. In particular, the axis-angle pairs (n, 9) and (—n, —0) represent the same rotation, and when
6 =0, n may be any unit vector or the zero vector.

NOTE A three parameter version in the form (a4, a,,4,)=(0n) is also in use. In this form, ¢ is non-negative and is

computed as ¢ =|(a, a,.a,)| and n= %(01,%%) when ¢=0.

The operation of an axis-angle rotation (n, ) on 3D Euclidean space is given by Rodrigues’ rotation formula

(Equation (6.3)). There is no direct computational formulation of the composition of two axis-angle rotations in
axis-angle form.

6.4.4 Principal rotations and Euler angle conventions

6.4.4.1 Principal rotations

Principal rotations depend on a given orthonormal basis for 3D Euclidean space. Unit axis vectors may be
represented in that basis by the coordinate 3-tuples: x=(1 0 o)T, y=(0 1 O)T,andz=(0 0 1)T. As an axis of

rotation, each of these unit vectors is termed a principal axis of rotation. A rotation about a principal axis is
termed a principal rotation. Some authors refer to these rotations as elementary rotations. The vector space
operators: R (), R, (B).and R (y) denote the three principal rotations through the respective angles

y

a, f,and y modulo 2z in the PVR convention. Principal rotations in the CFR convention are denoted by
2 (a), 2,(p),and 2,(y).

6.4.4.2 Euler angles

Euler angles are a specification of a rotation obtained by applying three consecutive principal rotations. There
are twelve distinct ways to select a sequence of three principal axes and apply the principal position rotations
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(24 if left-handed axes are considered)'®. Each such ordered selection of axes is an Euler angle convention.
There is little agreement among authors on names or notations for these conventions. There are numerous
Euler angle conventions in use and many are named inconsistently. Some authors use a left-handed
coordinate system. All coordinate systems in this International Standard are right-handed.

This International Standard adopts the following convention and notation for Euler angles: Given a 3-tuple of
Euler angles (a, ,3,7) the Euler convention specification shall be specified by a character string denoting the

sequence of principal axes in the form A— A, — A; where each symbol A;, A,, As is one of the axis letters x, y,
or z. Thus (a,,B,]/) in the z-x-z Euler convention is the composite of a principal rotation about the z-axis first,

the x-axis second, and the z-axis again for the third rotation.

The three angles representing a rotation in a given Euler angle convention are not necessarily unique modulo
2n. The conditions that result in non-unique angle 3-tuples are given in Table 6.4 for the z-x-z Euler angle
convention and in Table 6.6 for the x-y-z Euler angle convention (see also 6.4.4.5).

There are several ways to realize an Euler angle sequence. In the PVR convention, the three principal
rotations may either be rotations about the original axes, or about the successively rotated axes. Given a

rotation, let X, y,Z denote the principal axes after the successive rotations are applied to the original X, y,z

axes. To distinguish between these two coordinate bases, coordinates with respect to the (static) original
basis x, y,z shall be termed space-fixed coordinates and those with respect to the sequentially rotating

X, y,Z axes shall be termed body-fixed coordinates. It is useful to think of the X, y,Z as attached to a rigid

entity that will be rotated. In the CFR convention, the realization is similar to the PVR body-fixed case in that
the rotation angles are measured from the rotated axes (see Equation (6.1)). These three realizations of

(e, B,7) in the Ai— A, — As Euler convention (in right-to-left operator order) are:

R, (7)°Rs (B)°R, (@) PVR convention space-fixed (6.7)
=R, (@)°R; (B)°R; (7) PVR convention body-fixed
=9, (-a)°, (-)>2, (-7) CFR convention

In Equation (6.7) axis letters A denote static axes and letters A denote successively rotated axes.

EXAMPLE 1 Using Equation (6.7), (n/6, /4,m/2) in the z-x-z Euler convention, the PVR realizations are:
R, (n/2)o R (n/4)o R, (n/6) space-fixed, and R, (n/6)- R, (n/4)- R, (n/2) body-fixed.

EXAMPLE 2 Substituting (W,H,(p) in Equation (6.7), the Euler x-p-z convention has the following PVR realizations:
R (p)°R,(9) R, (v) space-fixed, and R_(y)o R, (8)- R, (¢) body-fixed.

There are no direct computational formulations for the operation of an Euler angle rotation on 3D Euclidean
space or for representing the composition of two Euler angle rotations as a single Euler angle rotation. For
these computations, the principal rotation sequence is commonly realized as a product of matrices or
quaternions.

19 There cannot be two consecutive rotations on the same axis as they would combine to a single rotation. Thus, among
right-handed axis systems, there are 3 choices for the first rotation axis, 2 choices each for the second and third rotation
axes to avoid repeating the preceding axis choice (3x2x2=12).
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6.4.4.3 The z-x-z convention

Generally, the initial xy-plane and the final rotated xj -plane intersect in a line. This line is termed the line of
nodes for this convention. The Euler angles in the z-x-z convention are the three angles defined as follows:

« is the angle between the line of nodes and the x -axis,
f is the angle between the z-axis and the Z -axis, and

y is the angle between the x-axis and the line of nodes.
In the case that the initial xy-plane lies in the final rotated Xy -plane, # =0 or g =n (see 6.4.4.5).

In some contexts «, 5, y are known, respectively, as the spin angle, the nutation angle, and the precession

angle. These three angles specify a rotation as consecutive principal rotations using the z—axis, the x—axis and
the z—axis again. The three realizations (in right-to-left operator order) are:

R (7)o R.(B)° R, (a) PVR convention space-fixed,
R.(a)°R.(B)°R.(r) PVR convention body-fixed, and
Q (-a)o 2 (-B)>2,(-7) CFR convention.

k4

In the PVR body-fixed realization the first principal rotation is about the z-axis through angle «, which rotates
the x-axis to intermediate position x'. Next is a rotation about the x'-axis through angle g, which rotates the z-
axis to z". The third rotation is about the z"-axis through angle y . The sequence of PVR body-fixed rotations is
illustrated in Figure 6.2.

6.4.4.4 The x-y-z convention and Tait-Bryan angles

In this convention the line of nodes is the intersection of the xy-plane and the final rotated j7 -plane. The Euler
angles in this convention are defined as follows:

¢ is the angle between the line of nodes and the y -axis,
6 is the angle between X -axis and the xy-plane, (equivalently, the z-axis and the y7 -plane), and
w is the angle between the y-axis and the line of nodes.

These three angles ((p, o, 1,//) specify a rotation that may be realized (in right-to-left operator order) as

R (v)°R,(0)°R, (#) PVR convention space fixed,
R.(¢)°R;(0)°R.(v) PVR convention body-fixed and
Q (-9)>2,(-0)> L, (-) CFR convention.
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z—axis rotate

re

z—axis rotate

Figure 6.2 — Euler z-x-z body-fixed realization

The Euler angles in the PVR body-fixed realization are variously termed Tait-Bryan angles, Cardano angles,
or nautical angles. The various names given to these angle symbols include:

¢ roll or bank or tilt,

@ pitch or elevation, and
w yaw or heading or azimuth (see Figure 6.3).
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Figure 6.3 — Tait-Bryan angles

6.4.4.5 Gimbal lock

The term gimbal lock refers to a gyroscope mounted in three nested gimbals to provide three degrees of
rotational freedom. Each mounting scheme corresponds to an Euler angle convention. In any such mounting
scheme, there exist critical angles for the middle gimbal that reduce the rotational degrees of freedom from
three to two. In those critical configurations, the gimbals lie in a single plane and rotation within that plane is
figuratively "locked out" by the gimbal mechanism. This loss of a degree of freedom is termed "gimbal lock".

In the case of the Euler angle z-x-z rotation convention, it is assumed that the xy-plane and Xy -plane
intersect in a line (the line on nodes). That assumption is met when (modulo 2n) =0 and g ==n. If not,
£ =0 or B == and the consecutive rotations collapse down to a single principal rotation:

(0)oR, (a)=R.(7)°R_( a)=RZ(7+a)‘ (6.8)

NOTE 1 This situation is illustrated by a spinning table top. The top spins on its spin-axis and precesses about the
precession-axis. The angle between the spin- and precession-axes is the nutation angle. When the spin-axis is perfectly
vertical (either upright or upside down), the nutation angle is 0 or n and the spin- and precession-axes become
indistinguishable from each other as indicated in Equation (6.8).

In the case of the Euler angle x-y-z convention (Tait-Bryan angles) it is assumed that the xy-plane and 7 -
plane intersect in a line (the line of nodes). That assumption is met when 6=+ 7z/2 modulo 2n. If not,
0 =+rx/2and the x-axis becomes parallel to the z-axis and the consecutive rotations collapse down to a
single principal rotation:

O=+7/2: R (w)oR, (7/2)oR ($)=R. (v+9) (6.9)
0=-m/2: Rz(l//)oRy(—ﬂ'/Z)oRx(¢)=Rz(l//—¢).
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NOTE 2  This situation is illustrated by an aircraft as in Figure 6.3. When the aircraft either climbs vertically, or dives
vertically, roll-rotation cannot be distinguished from (plus or minus) yaw-rotation. This occurs at critical pitch angles of

0 =+m/2 as indicated in Equation (6.9).
6.4.5 Quaternion representation

6.4.5.1 Quaternion notations and conventions

The quaternion system is a 4-dimensional vector space together with a vector multiplication operation that
forms a non-commutative associative algebra. In analogy to complex numbers that are written as

a+ib, i’ = -1, quaternion axes i, j k, are defined with the following relationships: i* =j* =k* = ijk = -1.

There are several notational conventions in use including the three termed in this International Standard as
the Hamilton form, the 4-tuple form, and the scalar vector form. In these notation forms a quaternion ¢ is

denoted as follows:
qg=¢ +teitejt+ek Hamilton form
q= (60161,62163) 4-tuple form

;
qg=(eye), e=(¢ ¢ ¢) scalar vector form
where e, ¢, e,,e, are scalar values.

The ¢, value is termed the real (or “scalar”) part of ¢ and (e1,e2,e3) is termed the imaginary (or “vector”) part
of ¢ . The remainder of this clause uses the scalar vector form.

NOTE 1 In the literature, the component order of the scalar vector form is sometimes reversed: ¢ =(e,¢,).

NOTE 2 A unit quaternion (see below) in 4-tuple form is also termed the Euler parameters (or the Euler-Rodrigues
parameters) of a rotation. In the literature, the real part of the 4-tuple form is sometimes placed last: ¢ = (e1,ez,e3,e4) where

e, = e

6.4.5.2 Quaternion algebra
Quaternion multiplication and other operations are defined in Annex A in all the three notational forms. Given
quaternions ¢ =(e,,e) and p =(d,,d), A.10 defines:

the product pg = ((doe, —d o e), (¢yd + dye +d x ) ,

the conjugate ¢° =(¢,,—e),

the norm gq" =q'q=(¢3 + ¢ + ¢ +¢, 0), and

the modulus |q| = \qq* = &) +¢l +¢&; +¢ .

A quaternion ¢ is a unit quaternion if |¢|=1. In that case gq" = ¢’q =(1,0) which is the multiplicative identity

so that, for a unit quaternion, its conjugate is its multiplicative inverse ¢ ' =¢". Any unit quaternion may be
expressed in the form:

110 © ISO/IEC 2012 - All rights reserved



ISO/IEC 18026:2012(E)

q = (cos(6/2), sin(6/2)n) (6.10)

where:

n= "—e is a unit vector in 3D space,
e

0= 2-arctan2(«/e12 +e+él, eo).

NOTE The two argument arctangent function arctan2() is defined in Annex A.

1
|

6.4.5.3 Quaternion operators on 3D Euclidean space

Each quaternion ¢ corresponds to a transformation of 3D Euclidean space as follows. If r is a vector in 3D
Euclidean space, the corresponding quaternion is formed by using 0 for the real part and r for the imaginary
part (0,r). A unit quaternion ¢ operates on (0,r) by left multiplying with ¢ and right multiplying with its

conjugate ¢". The real part of the product ¢(0,r)¢" =(r;,r'), is 0. Thus, ¢(0,r)¢" =(0,#') is pure imaginary
and the quaternion ¢ associates r’ with r . Symbolically the operation on r is:

r— r' = imaginary part{q(O,r)q*} : (6.11)
This is equivalent to:

r’=(e§—eoe)r+2(eor)e+2eoexr. (6.12)
-q =(—e0,—e) produces the same r’ so that g and —¢ produce equivalent rotations.

If ¢ = (cos(@/z), sin(9/2)n) is a unit quaternion, Equation (6.12) reduces to the Rodrigues rotation formula for
a clockwise rotation about » through angle 6:

r'=cos(0)r+(1-cos(0))(ner)n+sin(0)nxr.

p

A non-zero quaternion p and its corresponding unit quaternion ¢ =-—5 perform the same rotation
4

p(0r)p " =4(0r)q .

For this reason, some authors use p(O,r)p‘1 operations for any non-zero quaternion while others use the
q(O,r)q" operator and restrict operations only to unit quaternions.

The quaternion representation of rotation facilitates the computation of the composition of two rotations.

If g,and ¢, are two unit quaternions, the composite rotation on r that is obtained by first rotating with the
rotation induced by ¢, and then rotating the result with the rotation induced by ¢, is the same as the single

rotation induced by the product q,q, since ¢, {g,(0,r)q; }4; = 4,4,(0.r) ;45 = {a,4,}(0.r){4,4.} -
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6.4.6 Representation summary

Some important attributes of the representations in this section are summarized in Table 6.1.

Table 6.1 — Summary of representation attributes

Representation Data Data Ambiguities o
compo- . Composition Inverse
type constraints (modulo 27)
nents
(. 0)
: . Convert to/from —
Axis-angle 1 is equivalent to another (m,-0)
(n, 6) 4 | = (-n,-06). representation or
If =0, nis for the operation (-n.0)
indeterminate
i det(R)=1 i
ME;;I’IX 9 ( ) None Ilt\'/la;'mxt' R
RT = p- multiplication
2 or more
Convert to/from
Euler angle z-x-z convention: another See
conventic?ns 3 None see Table 6.4 representation for Note 1
the operation EE—
Tait-Bryan x-y-z angles: (see Note 2)
see Table 6.6
Unit quaternion 4 unit constraint: q is equivalent to —¢ Quaternion q" or
q qq" =1 (see Note 3) multiplication -
NOTE 1  The inverse in the Euler angle z-x-z convention is

-1
[R.(r)oR(B)oR.(«)] = R.(-a)o R (-B)°R.(-1) = 2.(a) 2.(8)° 2.(7)
The inverse in the Euler angle z-y-x convention (Tait-Bryan angles) is

[R.(w)o R, (0) R, (#)]" = R, (~9)o R, (-0)c R, (-) = 2, (1) 2, (0)> 2, (¢)

NOTE 2  The composition of Euler angle operations may also be performed in a "direct" method that involves lengthy
expressions combining forward and inverse trigonometric functions.

NOTE 3  Formulae such as Equation (6.12) require the unit quaternion constraint. Other useful relationships such as

Equation (6.11) do not have that requirement. For that reason, some applications do not enforce the unit constraint. In the
unconstrained case, every non-zero scalar multiple of a given quaternion is rotationally equivalent to it.
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6.5 Inter-converting between rotations representations

6.5.1

6.5.1

Euler angle conventions and matrix representation

A Matrix forms of principal rotations

The matrix representations of principal rotations are given in Table 6.2.

6.5.1.2

Table 6.2 — Principal rotations as matrix operators

PVR convention

Name Notation | Matrix operator (left multiplication)
1 0 0
x-axis principal rotation 2, (o) 2, (0,)=|0 cos(@,) sin(e) |,
CFR convention A 0 -sin(w,) cos(a,)
where o, is the angle of rotation.
x-axis principal rotation R, (o) 0 COS 601 —sin( CU1 ,
PVR convention A 0 sin(e,) cos(w,)
where o, is the angle of rotation.
cos( a)2 —sin( a)2
y-axis principal rotation ) ( o ) ,
CFR convention yir2 sin(w,) 0 cos(a,)
where o, is the angle of rotation.
cos a)2 0 sin a)2
-axis principal rotation ,
Y P P R.V (a)Z) sin 0
-sin(w,) cos(a,)

where o, is the angle of rotation.

z-axis principal rotation
CFR convention

cos(w,) sin(w;) 0
—sin( co3 cos( a)3 01,
1

where o, is the angle of rotation.

z-axis principal rotation
PVR convention

R, (w;)=| sin(w,) cos( a)3
0
where o, is the angle of rotation.

cos(w,) -sin( J

The z-x-z Euler angle convention

The angle sequence («,f,7) in the Euler z-x-z convention is converted to a matrix M by forming the
matrix product of the corresponding three principal rotation matrices specified in Table 6.2. The resulting

matrix is given in Equation (6.13).
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M =R (7)°R, (B)°R, (a)= (6.13)
Cosa cosy —cos #sinasiny —sinacosy —cos fcosasiny  sinfgsiny
cos fsinacosy +cosasiny cos fcosacosy—sinasiny —singcosy
sin gsina sin fcosa cos f3

Conversely, given a matrix M with elements gj;, the equation may solved for the principal rotation factors
R, (7)o R.(B)° R (a), and therefore solved for angles (. B,7). The solution is given in Table 6.3.

Table 6.3 — Principal factors for the Euler z-x-z convention

Case Principal factors for rotation R (7)o R_(8)° R, ()
(all angles modulo 27)
B = arccos(ay, )
[ principal value | a = arctan2(ay,, as, ) y = arctan2(a,,, — ay;)
O<p<m
Ay, # £1
3 =arccos(as,)
[ 27 - principal value ] a =arctan2(—ay,;, — ay,) y =arctan2(—aj,, ay;)
n<f<2n
ayy = —1 B=n any value of « y = arctan2(ay,, a;) + @
ay =+1 | p=0 any value of « y = arctan2(ay,, a,,) - a

In the case a,, # +1, arccos() is multi-valued so that there are two valid solution sets depending on the

quadrants selected for arccosine values20. The principal value solution is the commonly used one. The two
argument arctangent function arctan2() is defined in Annex A.

In the case a,, =1, using trigonometric identities, the matrix expression reduces to :
cos(y-a) sin(y-a) 0
R (7)oR, (7)o R (a)=|sin(y-a) -cos(y-a) O
0 0 -1
For this reason, only the difference of the other two angles can be determined by using
y —a =arctan2(ay,, a,,). Therefore, all values are valid for « if y =arctan2(a,, a;,)+a . The case a,, =+1 is

similar to the previous case with the sum of the angles determined by using y +« = arctan2(ay,, a,,) . These
two cases correspond to the gimbal lock Equation (6.8).

20 Note that computer library functions such as acos() return the principal value only. The second solution for # may be
obtained by subtracting the principal value from 27 .
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As seen in the preceding tables, the three angle sequence corresponding to a given rotation or orientation
operator is not unique modulo 2n. Two sequences, (a1,,81,71) and (az,ﬁz,yz) of z-x-z principal factors specify

the same operator if they satisfy one the criteria specified in Table 6.4.

Table 6.4 — Equivalence of z-x-z principal factor sequences

Case Criteria for the equivalence of
(equality angle sequences (o, 3,7,) and (a,,f3,,7,) for

modulo 2m) principal factor z-x-z sequences
B, =5 a,=a, 7,=7, [B.B,#00rn]  (in)equalities modulo 2n

B+ B, =2n lo, —a|=m |y, —n|=n[B.B,#00rn] (in)equalities modulo 2n

Bi=p,=mn a, -y, =a,-y, equality modulo2n

Bi=p5=0 o, +y, =a,+y, equality modulo 2n

6.5.1.3  The Tait-Bryan convention x-y-z

The angle sequence (¢,6,) in Euler convention x-y-z is converted to a matrix M by forming the matrix
product of the corresponding three principal rotation matrices specified in Table 6.2. The resulting matrix is

given in Equation (6.14).

Conversely, given matrix M with elements ajj, the equation may solved for the principal rotation factors
R (v)oR, (6)> R, (¢), and therefore solved for angles (¢,6,1) . The solution is given in Table 6.5.

R (y)oR,(0)R,(¢)= (6.14)
cosicosd cosysingdsing —siny cosg Ccosy sindcosgd + siny sing
sinyycosd sinysindsing +cosy cos¢g siny sind cos¢g —cosy sing
—sind cosdsing cosdcosg
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Table 6.5 — Principal factors for the Euler x-y-z convention (Tait-Bryan)

Case Principal factors for rotation R ()R, (6)° R, ()
(all angles modulo 27)

0 = arcsin(-as, )
[ principal value | ¢ = arctan2(as,, a; ) y = arctan2(a,,, a,;)
-n/2<6<mn/2

ayy # 1
0 = arcsin(-ay,)
[ = - principal value ] ¢ = arctan2(—as,, — ;) y = arctan2(—a,,, —a,,)
n/2 <0 <3n/2

ay =1 0=n/2 ¢ =arctan2(a,,, a,; ) +y any value of y

ay, = +1 0=-n/2 ¢ = arctan2(-a,,, — a,3) — ¥ any value of y

In the case a,, #+£1, arcsin() is multi-valued so that there are two valid solution sets depending on the
quadrant selected for arcsine values2!. The principal value solution is the commonly used one.

In the case a,, = -1, using the trigonometric identities for the difference of angles and substituting sing =1
and coséd =0, the matrix reduces to:

0 sin(g-y) cos(p-y)
Rz(l//)oRy(E)oRx(gzﬁ): 0 cos(g—y) —sin(p—v)|.
2 -1 0 0

For this reason only the difference of the other two angles is determined as ¢—y =arctan2(a,,, a,;).
Therefore, all values are valid for  if we set ¢ =arctan2(a,,, a,;)+y . The case a, =+1 is similar to the

previous case with the sum of the angles determined by ¢+y =arctan2(-a,, —a,;). These two cases
correspond to Equation (6.9) and are the gimbal lock cases.

As seen in the preceding tables, the three angle sequence corresponding to a given rotation or orientation
operator is not unique modulo 2n. Two sequences, (¢1,91,1//1) and (¢2,¢92,1//2) of x-y-z principal factors specify

the same operator if they satisfy one the criteria specified in Table 6.6.

21 Note that computer library functions such as asin() return the principal value only. The second solution for & may be
obtained by subtracting the principal value from 7.
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Table 6.6 — Equivalence of x-y-z principal factor sequences

Case Criteria for the equivalence of
(equality angle sequences (¢,,0,v,) and (4,,6,.y,) for principal factor
modulo 27)

z-y-x rotation or x-y-z orientation sequences

6, =6, b=y W, =V, {91 " ig " 92} (in)equalities modulo 2

0,+6,=mn b, —d|=m |w,—vy|=m {91 # ig * 92} (in)equalities modulo 27

6, =06, =g & —v,=¢,—y, equality modulo2n
6,=0,= —g & +y, =¢,+y, equality modulo 2z

6.5.2 Matrix and axis-angle

Ay Ay Gy

Given a rotation matrix g = Ay Gy | the corresponding axis-angle representation (n, 0) is determined
a3 Az g3

using the procedure in 6.4.2.

An axis-angle rotation (n,H) , wWith n = (n1 n, ny )T, is converted to rotation matrix R, using the matrix form of
Rodrigues’ rotation formula (Equation (6.3)).
R= [IM +sin(6)S, +(1-cos(6)) Sz]

(6.15)
= [cos(@)l3x3 +(1-cos(6))n®n+ sin(@)sn]

where:
0 -n, n
S,=| n, 0 -n | isthe skew-symmetric matrix associated with n=(n, n, n, )T and
-n, n, 0

mhu,  nh, N
n®n=|nmn, n,n, nn, | isthe outer-product of n with n.

nyny - N3n,  Nghg
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The equation expands to yield matrix elements:

(1-cos®)nf +cosd (1-cos@)nn, —nysing  (1-cosd)nn, +n,sing (6.16)
R =|(1-cos@)n,n, +n,sin® (1-cosd)n; +cosd (1-cos&)n,n, —n, sind
(1-cos@)nyn, —n,sin@ (1-cos)nyn, +n,sin@ (1-cosd)n; +coso

6.5.3 Axis-angle and quaternion

A rotation in axis-angle form (n,0) corresponds to unit quaternion ¢ = (cos(6/2), sin(6/2)n).
A unit quaternion corresponds to axis-angle form (n,@) computed as in Equation (6.10).

6.5.4 Matrix and quaternion

The matrix M corresponding to a unit quaternion ¢ =(e,.e), e =(e; e,.¢, )T is
1- 2(e§ +e§) 2(eje, —epes) 2(eqes +ege,) (6.17)
M =|2(ee, +eq4e;) 1—2((312 +e§) 2(eye; —e4e;)

2(e1e3 - eoez) 2(8263 + eoe1) 1- 2(612 + eg)

Ay Gy Gy

The quaternion ¢ corresponding to a rotation matrix a7 | 4,, is computed as follows:

Qyy Oy
Ay Gy Ay

2 _

1 _ 1
I ;(1 + Trace(R)) = 2(1 +ay + ay + a33)
e 2
if g >0,
€ 1 A3y — Aoy
e=1¢e = 4e, Qg3 —d3q |,
) dyy — dyy
else ¢, =0,
2 _ 1
e = —E(a22 + a33),
. a a
ife? >0,e, =—2, ¢, =—2,
2e, 2e,
else ¢, =0,
2 _ 1
& =31(1-as),
. a
if e22 >0,e, =2
2e,
else ¢, =0, e, =1.

A rotationally equivalent quaternion is —q.

118 © ISO/IEC 2012 - All rights reserved



ISO/IEC 18026:2012(E)

6.5.5 Euler angle conventions and quaternions

The principal rotations (see 6.4.4.1) correspond to the following quaternions:

R.(7) <> (cos(r/2),sin(y/2)z)
R, (B) ©> (cos(/2).sin(8/2)y)
R, (o) > (cos(a/2), sin(a/2)x)

For each Euler angle convention, multiply the corresponding quaternions in the space-fixed realization
ordering. Terms in the resulting product may be simplified using the orthonormal property of the vector set x, y
and z, and various trigonometric identities.

For the Euler angle z-x-z convention, the quaternion ¢ corresponding to R, (»)° R, (8)° R, () is:

q =(cos(r/2), sin(y/2)z)(cos(8/2), sin(/2) x)(cos(«/2), sin(«/2)z).
Multiplied out the expression reduces to:

q=(c €)
where:

el 2) |
fo{rg8) (5 els) ol

For the Euler angle x-y-z convention (Tait-Bryan angles), the quaternion ¢ corresponding to
R.(w)o R, (0)° R (¢) is:

q = (cos(y/2), sin(y/2)z)(cos(6/2), sin(6/2) y)(cos(¢/2), sin(¢/2)x).

Multiplied out the expression reduces to:
q=(e €)=(ey € €, ¢)
where:
e, = cos(i/2)cos(6/2)cos(¢/2)+ sin(y/2)sin(6/2)sin(¢/2
)

Jcos( (¢/2)

e, =cos(y//2)cos(0/2 sin(¢/2) —sin(y/2)sin(6/2)cos(¢/2)
=cos(i/2)sin(6/2)cos(¢/2) + sin(/2)cos(6/2)sin(4/2)

, = sin(y/2)cos(6/2)cos(4/2) - cos(/2)sin(6/2)sin(4/2)

To convert a unit quaternion g¢=(¢,e)=(¢ ¢, e, ¢e) to the Euler angle z—x—z convention
R, (7)o R.(B)° R, (a), compute as follows:

if 0<(ef +e3)<1:
a= arctan2((e1e3 +e4e, ), — (265 — g8 ))
B = arccos(1 -2(ef +¢5 )) principal value: 0 < # <

y = arctan2((e,e; — egey ), (e, +egey ))
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if (e12 + @22) =0: =0 anda+y= arctan2((e1e2 —€0;), %—(ef +e§)).
if (e12 +e§) =1 f=nanda-y= arctan2((e1e2 —€0;), %—(ez2 +e§)) .

The solution in the first case is not unique, see Table 6.4. The last two cases are Euler angle gimbal lock
cases.

To convert a unit quaternion ¢ =(¢,, €) =(¢,, ¢, €,, ¢;) to the Euler angle x-p-z convention (Tait-Bryan angles)
R (v)° R, (0)°R,(¢), compute as follows.

If 2(eje; —epe, ) # £1:
= arctan2((e2e3 +eyey), (6‘12 +el ))

3
0 = arcsin(-2(e,e; — e, )) principal value: —7/2 < < /2

= arctan2((e1e2 +e5e3), 5—(e22 +él ))

If 2(6163 —eoez) =+1: O0=-n/2 andg+y = arctanz((e1e2 —e5e;), (eje; +epe, )) .
If 2(eje; —epe,) =1 O =mn/2 and ¢ -y = arctan2((e,e, — ese; ), (ere; +epey ) ) -

The solution in the first case is not unique, see Table 6.6. The last two cases are Euler angle gimbal lock
cases.
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