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10 SRF operations

10.1 Introduction

This International Standard specifies operations on SRF coordinates and, in the case of 3D object-spaces, on
SRF spatial directions, vectors and orientations. Underlying these operations are the similarity transformations
relating two ORMs. Similarity transformations are treated first in 10.3. The general case of changing the
representation of a position as a coordinate in one SRF to its representation as a coordinate in another SRF is
specified in 10.4, followed by important special cases. The specification of a spatial direction, vector or
orientation in the context of an SRF is defined, and operations for changing these representations from one
SRF to their corresponding representations in another SRF are specified in 10.5.

Euclidean distance in 2D and 3D object-space is specified in 10.6. Geodesic distance and azimuth on the
surface of an oblate ellipsoid (or sphere) are specified in 10.7.

10.2 Notation and terminology

An important category of spatial operations is changing the representation of spatial information in one SRF to
the representation in a second SRF. For these change of SRF operations, the adjective “source” shall be used
to refer to the first SRF, and the adjective “target” shall be used to refer to the second SRF.

The notation in Table 10.1 is used throughout this clause.

Table 10.1 — Notation

Notation Description
ORMg Source ORM
ORM Target ORM
ORMR Reference ORM for a given spatial object
Hgit Reference transformation from the reference ORMg to ORM;
Hgr Reference transformation from ORMg to the reference ORMg
Hr Reference transformation from ORM;+ to the reference ORMg
Hgsr Similarity transformation from the embedding of ORMgs to ORMy
Mgt Rotation matrix from the reference ORMg to ORM+
Msr Rotation matrix from ORM;s to the reference ORMg
Mgt Rotation matrix from ORMgsto ORM+
Mg Rotation matrix from ORMy to the reference ORMg
SRFsg Source SRF based on ORMg
SRF+ Target SRF based on ORM+
SRF, The local tangent frame SRF at a coordinate (See 10.5.2)
CSs CS of SRFg
CSt CS of SRF+
G Generating function of CSg
G, Inverse generating function of CS+
cs Coordinate of a spatial position in SRFg
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cr Coordinate of a spatial position in SRF+

ng Direction vector in SRFg (See 10.5.2)

n; Direction vector in SRF(See 10.5.2)

Rst Orientation of SRF+ with respect to SRFs in the position vector rotation convention

10.3 Operations on ORMs

10.3.1 Introduction

The similarity transformation (see 7.3.2) Hst between a source/target pair ORMgs and ORMy underlies the
coordinate operations in 10.4. Given a set of » ORMs there are n(n-1) such source and target ORM pairs.
Instead of specifying the full set of similarity transformations, this International Standard reduces the
requirement to specifying the reference transformation Hsg from each object-fixed source ORMg to the
reference ORMg for a given object. This subclause specifies the methods of expressing a similarity
transformation Hst in terms of the reference transformations for the source and target ORMs. The cases of
ORMs for a single object are treated in 10.3.2. The more general cases in which ORMg and ORMy are ORMs
for different objects are treated in 10.3.3.

10.3.2 ORMs for a single object

If ORMs is an object-fixed ORM, its reference transformation Hsg is a type of similarity transformation. Any 3D
or 2D similarity transformation may be represented with the STT ROTATE _SCALE_TRANSLATE in the 3D
case or STT ROTATE SCALE TRANSLATE 2D in the 2D case (see Tables 7.19 and 7.20). Thus using the
notation of the STT formulation, Hsg may be represented in the form given by Equation (10.1).

X X Ax X (10.1)
y| =Hg||y| |=|A| +5gMg|y
ZJR Z)s Az )og Z)s

NOTE The processes by which ORMs for the Earth are established are based on physical measurements. These

measurements are subject to error, and therefore introduce various types of relative distortions between ORMs. Equation
(10.1) is based on the assumption that positions in object-space are error free, and the equation includes no compensation
for these distortions.

The reference transformation H:g from ORM; to the reference ORMRis also a similarity transformation.

An important operation is the similarity transformation Hst from ORMg to ORM+, when neither the source nor
the target is necessarily the reference ORM. The Hsr transformation may be expressed as the composition of

H, with HT‘; (or Hgt, Which is equivalent to the inverse of Hygr) as in Equation (10.2) (see Figure 10.1):

Hg = Hgp o Hyg (10.2)
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ORMg

Figure 10.1 — Composed transformations

H_, is also a similarity transformation:

X 1 X Ax
Hy ||y Z_M'?R Y| —| Ay
z ST z Az
R R ST
Ax 1 X
|| Mgy
TR
Az Jor ZJRr

Because the matrix a ., is a rotation matrix, its transpose M:R is also its inverse M, . The inverse of a__

is also the matrix M, corresponding to the reverse rotations of ORMr with respect to ORMg. In particular:

My, = M‘Ij; = MTTR

and
X Ax 1 X
Hy ||y =| Ay +— Mg |y
R
ZJr Az Jor ZJr

The composite operation Hg; = Hy, o Hyy reduces to:

X X Ax X (10.3)
s,
Hg |y =HgoHg| |y =| Ay +£MST y
TR
ZJs ZJs Az )or Z)s

where:
Mg; = Mg ° Mg, and

Ax Ax 1 Ax
Ay =|Ay| + . M| Ay
TR
A ST Az RT Az SR

If the rotations M, and M, ;are equal, then Mg, is the identity matrix, and if s¢z = 575, Hsr simplifies to a
translation of the origin:

X Ax X
Ho || y| |=| & | +|»
ZJs Az )y 2 )s
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Equation (10.2) and Figure 10.1 also apply to the 2D case.

If the source ORMs is a time-dependent ORM for a spatial object, ORMs(#) shall denote the ORMg at time ¢,
and H (¢) shall denote the similarity transformation from ORMgs(¢) to the object-fixed reference ORMg. If the

similarity transformation Hg (7) can be determined, it is a time-dependent affine transformation. For a fixed

value of time 7, Equation (10.2) and Figure 10.1 generalize to H; (1,) = Hg; © Hgs (1,) . The generalization to

a time-dependent target ORM«(r) is Hg; (f,) = Hg; (f,) ° Hss - The generalization when both ORMs are time-
dependent at time 1o is Hg; (1,) = Hg; (1) o Heg (%) -

EXAMPLE ORMs(¢) is the ORM EARTH_ INERTIAL J2000r0 at time ¢. ORMg is the Earth reference ORM
WGS_1984. Because ORMs(r) and ORMR share the same embedding origin, the H,(¢) transformation is a (rotation)
matrix multiplication operation (without translation). The matrix coefficients for selected values of ¢ account for polar
motion, Earth rotation, nutation, and precession. Predicted values for these coefficients are computed and updated weekly
by the International Earth Rotation Service (IERS) [IERS]. See 7.5 for other examples of dynamic ORM reference
transformations.

10.3.3 Relating ORMSs for different objects

If a spatial object S exists in the space of another spatial object T, and if ORMy is the reference ORM for
object T, and if the two objects are fixed with respect to each other, then Hgg shall denote a similarity
transformation from ORMs to ORMg. Hgr is an affine transformation. If ORM< is an object-fixed ORM for the
object T, then Hst is given by Equation (10.2). The time dependent generalizations of Equation (10.2), defined
in 10.3.2, are also applicable to this case.

EXAMPLE ORMs is an ORM for the space shuttle (as a spatial object). ORMgr is the Earth reference
ORM WGS_1984. When in orbit at time ¢, H, (¢) transforms positions with respect to ORMs to positions with respect to
ORM WGS 1984.

If a spatial object S does not exist in the space of another spatial object T, a similarity transformation between
their ORMs is not intrinsically determined. However, if an invertible affine transformation (Hsg) between ORMsg
and the reference ORM for object T is provided, then, given an object-fixed ORM for object T, ORM;, Equation
(10.2) may be used to define an invertible affine transformation Hsr, from ORMg to ORM+. An important
instance of this case occurs when S is an abstract object and T is a physical object (see 10.4.6).

10.4 Operations to change spatial coordinates between SRFs

10.4.1 Introduction

Given a coordinate ¢, in a source SRF, SRFs, the change of SRF operation25 computes the corresponding
coordinate ¢; in a given target SRF, SRF+. The general case of this operation is presented in formulations in

10.4.2 for time-independent (static) and time-dependent (dynamic) ORM relationships. The specific SRF
coordinate-systems CSg and CS; impose restrictions on the applicability of the formulation because of CS
domain/range constraints or because of optional valid region constraints (see below).

The formulations depend on the existence of a (static or dynamic) embedding transformation Hst from ORMg
to ORM;. If ORMs and ORM+ have the same object space, Hst is formulated in 10.3.2 in terms of ORM
specification elements. In the case of different object spaces, Hst must be explicitly provided (see 10.3.2).

Special cases allow for simplifications that result in computational short cuts to the general change of SRF
formulation. The case of matched normal embeddings (which includes the case ORMs = ORMy) is treated in
10.4.3. Further specializations arise from combinations of specific coordinate-systems. Subclause 10.4.4
treats combinations of celestiodetic with a map projection.

25150 19111 defines this case as a coordinate operation.
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The case for which CSg = CSt and ORMg and ORM; differ26 does not generally produce a computational
simplification. However, when both the source and target SRFs are based on the CS
LOCOCENTRIC _EUCLIDEAN_3D, a simplification is produced and is presented in 10.4.5. This case is
important for operations on directions, vectors, and orientations (see 10.5).

An important special case of unrelated object spaces occurs when the source object space is an abstract 3D
object space. This special case is treated in 10.4.6.

10.4.2 General case

SRFs and SRF+ are two object-fixed SRFs for a spatial object and p is a point in object-space that is in the
coordinate system domains of both SRFs. ¢; denotes the coordinate of p in SRFg, and ¢; denotes the

coordinate of p in SRF+. The determination of ¢, from ¢g is an operation involving the SRF pair (SRFs, SRFy).
The most general form of the operation is:

¢ =G;' o Hy 0 Gg () (10.4)

See Figure 10.2. CS generating and inverse generating functions are specified in Clause 5.

SRFs SRF+

Cs G "'t ° Hst ° Gs Cr

ORMs Hst ORM;

Figure 10.2 — Change of SRF operation — applied to coordinates

When Hsr is approximated with the Bursa-Wolf equation (see STT PV_7 PARAMETER Note 2), Equation
(10.4) is known as the Helmert transformation.

26 |SO 19111 defines this case as a coordinate transformation.
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If SRFs and SRF+ are two celestiodetic SRFs with different ORMs for the same spatial object, Equation (10.4)
transforms the coordinate ¢ = (4, ¢,,4) With respect to one oblate ellipsoid to ¢; = (4;,¢;,/#,) with respect to

the other oblate ellipsoid. A transformation between two celestiodetic SRFs for the spatial object Earth is
known as a horizontal datum shift.

NOTE A number of numerical approximations developed to implement horizontal datum shift have been published.
Under the assumption of zero rotations and no scale differences, a widely used approximation27 to directly transform
¢s = (4,05, hs) to c; = (4,0, ) is the standard Molodensky transformation formula (see [83502T]).

In the time-dependent case, Equation (10.4) may be generalized to:
e; (1) =Gy o Hg (1) G (cs)
Equation (10.4) is only defined for a value of ¢4 in the CSg domain if its corresponding position belongs to the

CSy range. If Dg' is the domain of the inverse generating function G;' and D' is the domain of the inverse
generating function G:, Equation (10.4) is only defined for ¢ in the set:

67 (D A H (D7) = {es in Dy | Hy; (Gs(es)) in D7} (10.5)

EXAMPLE SRFs is SRF GEOCENTRIC WGS 1984 and SRFy is an instance of SRFT MERCATOR, with ORM
WGS _1984. Equation (10.4) is not defined for any ¢4 that is on the z-axis of SRFs, because the z-axis is not contained in

the set in Equation (10.5).

SRF+ may optionally specify a valid-region 7}, and may optionally specify an extended-valid region E; (see
8.3.2.4). If D; is the domain of the generating function G, then V. c E; < D; . If Equation (10.4) is defined
for ¢s, ¢, may be valid (c; isin V), or extended valid (c; isin E; \V;) or defined (¢; isin D; \ E;) or invalid.
The set of ¢4 coordinates for which ¢, is valid is:

GS'(Dd N HG (Gr (7)) = {es In Dg | Hy: (Gs(cs)) in Gr (V7))
where:
G (V;)={pinDi' |G (p)in V;}.

In applications that functionally conform to an SRM profile, the domain of an SRF operation is restricted to the
accuracy domain of the SRF as specified by that profile (see Clause 12).

10.4.3 The matched normal embeddings case

If both source and target ORMs are the same, or, more generally, if the reference transformations of ORMg
and ORMy are equivalent (ie., matched normal embeddings), Hg; is the identity transformation.

Consequently, Equation (10.4) simplifies to:
e =G oG (cs). (10.6)

EXAMPLE 1 If SRFs is a celestiodetic SRF (see 8.4) and SRFrt is the celestiocentric SRF for the same ORM
(ORMs = ORMy), then since the CS of the celestiocentric SRF is Euclidean_3D for which the G;' is the identity, Equation

(10.6) reduces to the geodetic generating function: ¢; = G (cs) -

27 Historically it was thought that these approximations would require less computation than direct conversion. The
perceived computational advantage may have been overcome by technology advances. New efficient algorithms for
converting celestiocentric coordinates to celestiodetic coordinates have been developed that result in appreciably faster
transformations without the attendant loss of accuracy.
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If SRF1 is a 3D SRF that has ellipsoidal height designated as the vertical coordinate-component of the SRF
(see 8.4), and SRFgs is the induced zero height surface SRF, the promotion operation converts a surface
coordinate ¢4 in SRFs to a 3D coordinate in SRF+ by setting the 1% and 2" coordinate-components of ¢; to

the 1% and 2™ coordinate-components of ¢ and setting the 3¢ coordinate-component, ellipsoidal height, to 0.

Coordinate promotion is a special case of Equation (10.6). Applicable SRFs include those based on SRFT
CELESTIODETIC, PLANETODETIC, and all map projection SRFTs.

EXAMPLE 2 If SRFs is an induced surface celestiodetic SRF (see 8.4) and SRF is the 3D celestiodetic SRF for the
same ORM (ORMs = ORMy), Equation (10.6) promotes ¢, = (4,¢) from a coordinate of CS type surface to ¢, = (4,¢,0)
a coordinate of CS type 3D.

If SRFs is a 3D SRF that has ellipsoidal height designated as the vertical coordinate-component of the SRF
(see 8.4), and SRF is the induced zero height surface SRF, the truncation operation converts a 3D
coordinate ¢ in SRFs to a surface coordinate ¢, , by setting the 1% and 2" coordinate-components of c; to

the 1% and 2™ coordinate-components of ¢g. The point in object-space corresponding to ¢g and the point in
object-space corresponding to ¢, are not the same point unless #=0. Truncation, therefore, does not
generally preserve location.

EXAMPLE 3 If SRFs is a_celestiodetic 3D SRF, the (induced) surface SRFrt is the surface celestiodetic SRF for the
same ORM. The truncation operation associates c, = (4,¢) to ¢, =(4.¢,h).

10.4.4 Matched normal embeddings and map projection SRFs

The CS generating function G,,, for a an augmented map projection SRF is implicitly defined (see 5.8.6) by
the composition of the generating function for the geodetic 3D CS generating function G, with the inverse

mapping equation @ =(0,,0,,h) as:
Gyp = Ggp 00 .

If SRFs and SRF; are map projection SRFs for the same object, and the corresponding reference
transformations are equivalent, then Equation (10.6) becomes:

Cr = (GGD,T OQT)_1 O(GGD,S OQS)(CS) (10.7)
=P G@L, 710G, s 00g (Cs)
where:
O, : inverse mapping equations for SRF,
G, s - generating function for the geodetic 3D CS for SRF,
0, : inverse mapping equations for SRF,,
P, : mapping equations for SRF,, and
G, 1 - generating function for the geodetic 3D) CS for SRF..
Furthermore, if ORMs = ORMy, then G, s = G, ; and Equation (10.7) simplifies to:
e =P oQg(cs)- (10.8)

If SRF+ is a celestiodetic SRF and ORM; = ORMgs, Equation (10.6) simplifies to:

e =0 (cs).
Similarly, if SRFs is a celestiodetic SRF and ORMy = ORMg Equation (10.6) simplifies to:
e =P (cg).
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10.4.5 Linear orthonormal 3D SRFs

The special case of source and target SRFs based on the CS LOCOCENTRIC EUCLIDEAN_ 3D is important
for the treatment of directions, vectors, and orientations (see 10.5). Every linear orthonormal CS may be
viewed as an instance of a CS LOCOCENTRIC EUCLIDEAN_3D. If SRFs and SRF+ are two such SRFs (see
Table 8.11), and F,, is the CS LOCOCENTRIC EUCLIDEAN_3D (see Table 5.9) generating function,

F,, may be expressed in terms of the CS binding parameter vectors ¢,r,s in the form of the affine

transformation:

u

Fesp (c) = Fep| v
w

=q+ur+vs+wt
r Sy 4
=qtu|r, |+v|s, [+tw i
3 S3 l3

=q+Rc

where:

The inverse generating function is expressed as:

E.?SD v |[=R"||v |- q
w w
where: R" is the transpose of R .

If vectors ¢g, rg, sg, 47, 1;, and s; are the CS binding parameters (see Table 8.11) for SRFs and SRFy
respectively, then substituting the expression in Equation (10.3) for Hst, Equation (10.4) specializes to:
¢, =F;

tesp, 7 © Hr OFLESD,S(CS) (10.9)
= R‘I(HST (‘Is +RSCS)_qT)

T S, S, T
=R ||y "(SS_R STqu_qT + =R Ry o Mg; o Rycs.
TR

In the case that the corresponding reference transformations of ORMg and ORM; are equivalent, Equation
(10.6) specializes to Equation (10.10):

(10.10)

e
¢ = Feyp 1o Flegp s (Cs)

=RTT(‘IS_‘IT)+RTT°RSCS.
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10.4.6 Instantiating abstract space linear SRFs
Engineering designs and abstract models are often intended for realization in the physical world.
EXAMPLE A building plan is designed in the source SRFs, an abstract space LOCAL SPACE_RECTANGULAR 3D

SRF. A terrestrial site survey establishes the origin of the target SRFy, a LOCAL_TANGENT SPACE_EUCLIDEAN SRF.
Source coordinates are related to target coordinates by: (x;,yy,z;) = (1+ As)(xs, 75,25 ) Where (1+As) is a scale factor.

More generally, models are scaled, rotated, or otherwise transformed by an invertible matrix 3x3 W before a
source coordinate is associated to a target coordinate. In many application domains, this similarity
transformation is in the form:

where k =(1+ As) is the scale factor, (xA Vi zA) is the translation displacement vector, and W is a rotation

matrix. In the computer graphics application domain this transformation is often represented in matrix 4x4
form:

x a, A, da. X, \[x
11 Qg Gz Xy
a, a, a
11 G2 Op3
y dyy Gy Gy Yy || )
= ,where | a,, a,, a,, |=kW.
z Q3 Gz Uiz Z, || Z “ a u
31 O3y Uz
1); 0 0 0 1)1)

This transformation between source and target coordinates may be viewed as an SRF coordinate operation
from ¢g in SRFg, an abstract space LOCAL SPACE RECTANGULAR 3D SRF, to a coordinate ¢; in SRFy,

a physical world LOCOCENTRIC _EUCLIDEAN 3D SRF.

In the notation of 10.4.5:
Gs(cs) = Rscg, and
G; (CT) =qr + Recq

Define an invertible affine transformation Hg, as Hg (v)=¢; + R; oWy (see 10.3.3). Substitute this Hg, in
Equation (10.4) and simplify:
¢; =Gy o Hg; 0 Gy (c5) (10.11)
=R/ (HST (Rses) _‘IT)
= R'-I!-(qT + Ry oW o Rscg _‘IT)
=W o Rycg
This illustrates that the transformation ¢, = W o R,cg may be viewed as a change of SRF operation.

NOTE  Equation (10.11) illustrates that digital graphic composite pattern modelling techniques such as SceneGraph
trees that use scale and rotation matrices W together with translation operations at each tree node are special cases of

Equation (10.4). See also 10.5.5 Example 2.
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10.5 Operations on directions, vectors, and orientations

10.5.1 Introduction

Specification of 3D directions, vectors, or orientations associated with a 3D SRF requires an underlying 3D
vector space. An SRF is either linear or curvilinear. In the linear cases, the structure of the coordinate-space
provides such a 3D vector space. In particular, all lines through distinct points in a given direction » are
parallel in both coordinate- and object-space. This shows that a linear SRF supports the translation invariance
of directions and vectors. A linear SRF will not preserve angular relationships between directions unless the
associated abstract coordinate system (CS) is also orthonormal. In the orthonormal case, angles and
distances are preserved.

In the case of a curvilinear 3D SRF, the structure of the coordinate-space does not provide an underlying 3D
vector space. To support curvilinear 3D SRFs, a method of associating a 3D vector space with any given
reference point in the SRF shall be used. This 3D vector space is termed the local tangent frame SRF at the
reference point. This association of a local tangent frame with a reference point is applied uniformly to both
curvilinear and linear SRFs.

The coordinate-space of an augmented map projection SRF (a map projection augmented with ellipsoidal
height as a third dimension) appears to inherit the vector-space structure of R®, however, the vector properties
of the (easting, northing, height)-coordinates do not carry over to object-space. This is illustrated in part by
the “up pointing” vector n = (0, 0, 1) that points in different spatial directions in object-space depending on the
map coordinate location at which n is placed.

In Figure 10.3, distinct position points p and ¢ on the ellipsoid surface are projected to augmented map
coordinates (s, ¢, 0) and (u, v, 0). Starting at these map coordinates, the coordinates one unit away in the “up
direction” are (s,#, 1) and (u, v, 1), respectively. In an augmented map projection, these coordinates
correspond to the position-space points p’ and ¢'. The direction from p to p’ is not the same as the direction
from g to ¢’. This shows that, in object-space, the "up direction" is relative to a reference point.

———————

position-space

Figure 10.3 — Coordinate-space and position-space directions compared

240 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 18026:2012(E)

A local tangent frame SRF, associated with a given reference point, shall be used to specify directions relative
to that reference point. Such an SRF is defined by having its origin at the reference point and its axes given by
the normalized vectors tangent to the coordinate curves passing through the reference point, as illustrated in
Figure 10.4. All linear and curvilinear CSs in this International Standard are orthogonal CSs, thus the local
tangent frame is an orthonormal linear SRF.

Local tangent frame axes

Reference
point

Coordinﬂ/ecv:urves

Figure 10.4 — Local tangent frame axes

Figure 10.5 shows two local tangent frames at points p and ¢. The local "up" directions may be specified as a
direction in either local tangent frame. Since directions are translation invariant in linear SRFs, conceptually
the two local tangent frames may be translated to a common origin, as in Figure 10.6.

—_————

object-space

Figure 10.5 — Local tangent frame axes at reference points p and g

=1

Figure 10.6 — Direction vectors in the two local tangent frames using a common origin
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To support the inter-conversion of directions, vector quantities?®, and orientations between two SRFs, this
International Standard uses the notions of reference point and local tangent frame. Since there is neither an
intrinsic SRF nor an intrinsic reference point in object-space, it is necessary to specify the reference point in
order to be able to inter-convert the representation of directions, vectors, or orientations between two SRFs.
This method of associating reference points and local tangent frames reduces the general problem of inter-
converting between two SRFs to that of inter-converting between two orthonormal linear spaces.

10.5.2 Specification of local tangent frame SRF

In this International Standard, a direction in a 3D2° SRFg is expressed as a combination of a unit vector and a
reference coordinate. The unit vector is in a 3D linear orthonormal SRF, termed the local tangent frame at the
reference coordinate, and is denoted by SRF.. SRF_ is uniquely defined for each reference coordinate using
the unit vectors tangent to the coordinate-component curves at the reference coordinate.

The local tangent frame SRF_ at a reference coordinate ¢ = (u, vo, wo) in the interior of the domain of SRFs is
specified by the SRFT LOCOCENTRIC EUCLIDEAN_3D with ORM = ORMg and parameter values:

q = G (5, vy, ), (10.12)
Y
r= ,and
b
Y,
§ = —=
v

where:

y, = %
1 du lI:ltOY

Vv, = d&
? dv v:vo,

C, is the 1 coordinate-component curve at (u,vy,w,), and

C, is the 2" coordinate-component curve at (uq, vy, w, ).

The vectors r and s are termed the local tangent vectors at ¢. Coordinate-component curves are defined in
5.5.3.

NOTE 1 The tangent vector to the 3" coordinate-curve at (uo, vo, wo) points in the same direction as the vector 7 =rxs
because of the coordinate-component ordering restriction specified in 5.6.4.

When SRFs is a linear SRF, SRF_ at reference coordinate (0, 0, 0) coincides with SRFs. In addition, the unit
vector that represents the direction is independent of the reference coordinate used. Linear SRFs include
those based on SRFTs CELESTIOCENTRIC, LOCAL TANGENT SPACE_EUCLIDEAN,
LOCOCENTRIC EUCLIDEAN_ 3D, and LOCAL SPACE _RECTANGULAR 3D.

10.5.3 Specification of direction

A direction in an orthogonal CS based SRFg shall be comprised of:
a) a coordinate c in the interior of the CS domain of SRFg, and

b) a unit vector n in the local tangent frame at c.

28 Not necessarily a direction or a unit vector, but any vector of interest.

29 Al of the 3D SRFTs in this International Standard are based on orthogonal CSs.
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The coordinate ¢ is termed the reference coordinate of the direction and its corresponding position is termed
the reference position for the direction. The vector n is termed the direction vector at c.

NOTE The local tangent frame at a coordinate is an instance of the SRFT LOCOCENTRIC EUCLIDEAN_3D that
provides a vector space setting for vector operations on direction vectors at c.

EXAMPLE 1 If SRFs is a LOCOCENTRIC_EUCLIDEAN_ 3D SRF with SRF parameters ¢, r and s, and ¢ is an SRFs
reference coordinate, then local tangent vectors at ¢ are equal to the SRF parameters r and s. If ¢ =(0,0,0), then SRF_ =
SRFs.

EXAMPLE2  SRFsis an EQUATORIAL INERTIAL SRF. This SRF is based on the EQUATORIAL_SPHERICAL CS. If
¢ =(4.6,, p,) is areference coordinate, then the local tangent vectors at c are:

r= 2t ands = Ya_
[ [val

=[S, (G meseenst) acos(asnG) psn@)]
(

(
~posin(6,)cos (%), —pysin(6,)sin(4), £, c0s(6,)), and

-sin(6y)cos(4,), -sin(g,)sin(4,). cos(8,)).

0=,

EXAMPLE 3 SRFs is a CELESTIODETIC SRF. This SRF is based on the GEODETIC CS. If c:(ﬂo,%,ho) is a
reference coordinate, then the local tangent vectors at ¢ are:

r=(-sin(4), cos(4,), 0),
s =(-sin(p,)cos (%), —sin(p,)sin(4,), cos(p,)), and

t=rxs=(C0SA COSp, SN Cosp, sing,).

In this example, SRF, is equivalent to a LOCAL TANGENT SPACE_EUCLIDEAN SRF with template parameter values
A= 0,0 =0, @ =0,X =¥z =0,and h, -

EXAMPLE 4 SRFs is based on an augmented conformal map projection CS. If ¢ = (u,,v,,/4,) is @ reference coordinate,
and (4, ¢,.h,) is the corresponding celestiodetic coordinate, then the local tangent vectors at c are:

r = (—sin 4, €08 7, + COS 4, Sing, Siny,, €OS A, COS , +Sin 4, Sing, siny,, —cospsiny,), and
s = (—sin 4, sin 7, — C0S 4, sin g, Cos 7,, €OS A, Siny, —sin 4, sing, cos y,, COS ¢, COS 7, )
where:
7o =7 (%) the convergence of the meridian.

In this example, SRF_ is equivalent to a LOCAL_TANGENT_SPACE_EUCLIDEAN SRF with template parameter values
A=lg, 0 =0y, a=yy, X =¥ =0,and hy.

10.5.4 Changing the reference coordinate of a direction
Given a direction represented with direction vector nq at reference coordinate ¢4, the same direction may be

represented at another reference coordinate ¢, in the same SRF, with direction vector n,. The direction vector
ny is computed as:
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n, = R n, (10.13)
where:
rer, ser, Ler
R=|res, s/os, tos,]|
net, s of, Lot
r and s, are the local tangent vectors at ¢,, and
t =rxs, fori = 12,

The local tangent vectors are computed as in Equation (10.12). The matrix R in Equation (10.13) is the
direction cosine matrix of the local tangent frame at ¢, with respect to the local tangent frame at ¢4 (see

Equation (6.6)).

If the SRF is based on a linear CS, then matrix R is the identity matrix and ny = n,. This implies that in a linear
orthonormal SRF, a direction vector is independent of the reference coordinate. Thus, Equation (10.13) is only
of interest in the case of a curvilinear SRF.

10.5.5 Representing a direction in a different SRF

Given a direction represented with direction vector ng at ¢s in SRFs, the same direction may be represented at
reference coordinate cr, with direction vector nt in SRF+. If Hsr is the similarity transformation from ORMs to
ORM; and Mgt is the matrix in the last term in Equation (10.3), then the direction vector ny is computed as:

n = Ry ng (10.14)
where:
;
Rs: = Ry o Mg; o R,
R! = the transpose of R;, and
forri = SorT,

L, =rxs = (t1,1 lis t’~3)’

r.=(r. r, ry)ands =(s, s, s,) arethelocal tangent vectors atc,.

i

Equation (10.14) is derived from Equation (10.9) by dropping the translation term since directions are
translation invariant, and dropping the scale factor (1+Asgg )/(1+ Asyg ) since nr is a unit vector.

The rotation matrix Ry, in Equation 10.14 is termed the orientation of SRF+ at reference point cr, with respect
to SRFg at reference point cs. The rotation matrix Ry, is a generalization of the matrix in Equation (10.13) that
accounts for the change of position-space between the source and target ORMs.

EXAMPLE 1 SRFs is SRF GEODETIC WGS 1984 and SRFy is SRF GEOCENTRIC WGS 1984. With SRFs
reference coordinate ¢ =(4, ¢, h)=(-777/180, +38,887/180, 0), the Washington monument, an obelisk, points

approximately in the direction ng =(0, 0, 1) at cs. In this example, ORMs = ORMr so that Msr is the identity matrix, and

because SRFr is based on SRFT CELESTIOCENTRIC, R is also the identity matrix. Consequently Equation (10.14)
reduces to:
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Ts1 Ssq sy |(O
n=Reng =|rs, S5, 15, || 0=t
Tss Ssa Isa 1
Then using the expression in 10.5.3 Example 3 for :
t; =(cos A, cosg, sinA cosg, sing,)
= (cos(~777/180)cos(38,887/180) sin(~777/180)cos(38,887/180) sin(38,887/180))
=(0,17511592 -0,758 510 36 0,627 69136).

The resulting vector », =(0,17511592 -0,758 510 36 0,627 691 36) is the direction vector in SRF.

Engineering designs and abstract models are often intended for realization in the physical world. In such
cases, the operation of changing the representation of direction vector ng in a linear SRF representing the
abstract space to a direction vector nt in a linear SRF representing the physical object space is based on
Equation (10.11). In the notation of 10.4.6:

10.15
ne =W o Rng. (10.15)

i

Division by the determinant cancels any scaling by matrix W to ensure that nt is a unit vector. (The rotation
matrix Rs does not change the length of ns.)

EXAMPLE 2 In ISO/IEC 18023-1 (see 118023-1), if an instance of the class <DRM Geometry Model Instance> has a
component of class <DRM World Transformation>, that component specifies an invertible matrix W and a coordinate ¢ in
the <DRM Environment Root> SRF. If ¢s and ns are a reference coordinate and a direction vector in an associated
LOCAL SPACE_RECTANGULAR_ 3D <DRM Geometry Model>, and SRFr is the local tangent frame at ¢, then Equation
(10.11) and Equation (10.15) may be used to compute ¢r and nr, respectively. The methods of 10.4.3 may be used to
further change ¢r from SRFy to the <DRM Environment Root> SRF. This procedure to change <DRM Geometry Model>
coordinates and directions to the environment root SRF is termed "model instancing”.

10.5.6 Representing a vector quantity in a different SRF

Vectors combine a direction with a magnitude, and are used to describe a number of properties of moving
objects, such as their velocities, accelerations and other quantities. Similar to directions, vectors are defined
with respect to the axes of a specific SRF_ at a reference point. All properties and operations that apply to
directions also apply to vectors.

Given a vector quantity vs at reference location ¢s in SRFg, it may be represented as vy at reference location ¢t
in SRF. If Ry, is the orientation SRFs at reference point c¢s, with respect to SRF at reference point cr, the

vector vy is computed as:
v = Rgpvs

Given a vector quantity vgin a body frame SRFg (or in general any linear orthonormal reference frame) whose
orientation at a reference location ¢s in SRFg is known, that vector quantity may be represented as vt at
reference location ¢t in SRF+. If Ry is the orientation of SRFg at reference point cg, with respect to SRFsg, the

vector vris computed as: v; = Ry; o Rygvg .

10.5.7 Representing an orientation in a different SRF

The orientation of an object E in 3D space specifies how a set of orthogonal axes attached to that object are
aligned with respect to the axes of a specific orthogonal SRF (see 6.1). The orientation of an object specifies a
rotation operation that would bring the SRF axes into alignment with the corresponding object axes (or vice
versa).
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As with directions, orientations that are specified with respect to an SRF use the unique local tangent frame
SRF, at a specified reference location (see 10.5.2).

Given R, the orientation of an object E at reference location cg with respect to SRFs, the orientation of that
object may be represented as R, at reference location cr, with respect to SRFt. If Rg; is the orientation of
the SRFg at reference point cg, with respect to SRF+ at reference point ¢y, the orientation R.; is computed as:

R.; = R; o R (see Equation (6.2)).

10.6 Euclidean distance

This International Standard supports an operation to return the Euclidean distance between two object-space
locations using the coordinates of those locations in an SRF.

If ¢4 and ¢, are two coordinates in an SRF, and if G is the generating function of the CS of the SRF, the
Euclidean distance de between the corresponding points in object-space is given by:

de (c1,c2) = d(G(C1)’G(C2))

where d is the Euclidean metric.

10.7 Geodesic distance operations

10.7.1 Introduction

A curve on a smooth surface that has the property that any sufficiently small segment of it realizes the
shortest distance on the surface between the segment’s two endpoints is called a geodesic. The formal
definition of a geodesic is given in A.7.4.

EXAMPLE 1 On a sphere, the equator, the meridians, and all other great circles are geodesics. Likewise any segment
of one of these curves is a geodesic. No parallel of latitude except the equator is a geodesic.

EXAMPLE 2 On an oblate ellipsoid, the equator is a geodesic, and the meridians are all geodesics. All the other
geodesics are curves which cross the equator at some non-right angle and wind around the ellipsoid between two parallels
of opposite latitude (see Figure 10.7).

Let points p4 and p, lie on a smooth surface. The shortest distance on the surface from p, to p, is the shortest
arc length associated with any of the smooth surface curves that connect p, to p,. This distance is unique, but
the curve that has this arc length may not be unique. In particular, for the two pole points, every meridian is
such a curve.

EXAMPLE 3  On an oblate ellipsoid, let p1 be the point with surface geodetic coordinates (A, @) = (0°,20°) and let p» be
the point diametrically opposite, i.e., with surface geodetic coordinates (A, ¢) = (180°,-20°). Then the shortest distance on
the surface from p1 to p. is twice the meridional quadrant, i.e., twice the length of a meridian from equator to pole. But
there are two distinct curves from p1 to p» which have this number as their arc length — one passes through the north pole
and the other passes through the south pole. (Both are composed of segments of meridians).

EXAMPLE 4  On an oblate ellipsoid with eccentricity £, let points ps and p» lie on the equator but be separated by a

longitude difference that is less than © and more than zy1-¢? , an angle called the “lift-off longitude”. Then there will be
two curves from pq to p» whose arc length is the shortest distance from p1 to p» — one lying in the northern hemisphere, the
other lying (symmetrically) in the southern hemisphere.
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north pole

meridians

Figure 10.7 — Examples of geodesics

If a curve lying on a smooth surface connects point p4 to point p,, and if that curve’s arc length is also the
shortest distance from p; to p,, then that curve is a geodesic. Thus, the arc length of the shortest curve
connecting the two points is termed the geodesic distance.

EXAMPLE 5  The two curves from p1 to p2 defined in Example 3 are geodesics.
EXAMPLE 6  The two curves from p1 to p2 defined in Example 4 are geodesics.

The converse is not true. If a geodesic starts at point p; and ends at point p,, its arc length may or may not be
the same as the shortest distance on the surface from p, to p,.

EXAMPLE 7  Let points p1 and p» lie on the equator of a sphere or oblate ellipsoid at longitudes 0° and 181°,
respectively. The segment of the equator from ps to p, that is continuous in longitude from 0° to 181° is a geodesic. (All
segments of the equator are geodesics). However, its arc length is not the shortest distance on the surface from p1 to po.
Any curve which realizes the shortest distance on the surface from p1 to p» has to lie within a single hemisphere of
longitude.

There are two problems of interest pertaining to geodesics on an oblate ellipsoid. In the first, called the direct
problem, a surface point, an azimuth, and a distance are given. The problem is to find a second surface point
which terminates the (unique) geodesic whose initial point is the given point, whose initial forward azimuth is
the given azimuth, and whose arc length is the given distance. Also to be found is the geodesic’s terminal
forward azimuth. The details are given in 10.7.3.

In the second problem, called the indirect problem, two distinct surface points are given. The problem is to
find the shortest distance on the surface between the two given points, and find the set of curves (which will
be geodesics) whose arc lengths equal this shortest distance. In addition, the initial and terminal forward
azimuths of each curve is to be found. The details are in 10.7.4.

This International Standard supports the geodesic operations for SRFs based on SRFT CELESTIODETIC,
PLANETODETIC, and all map projection SRFTs.
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Given two surface coordinates ¢4 and ¢, of points p1 and p,, respectively, the geodesic distance operation:

s=d,;(e,¢,)

7

is defined as the indirect problem for (14, ¢1) and (12, @) where (14, ¢) is the surface geodetic coordinate for
¢y and (A, ¢) is the surface geodetic coordinate for c,.

An extended version of this operation provides the forward azimuth value a4 at ¢; and the forward azimuth
value o, at ¢,:

{s,a1,a2} =dg (6‘1,02) -

The geodesic destination operation requires a starting point ¢4, a forward azimuth value «;, at ¢4 and a positive
distance s. It returns the destination point ¢, and the forward azimuth value o, at ¢,:

e} = dg, (e;,0,,9)
where { (12, ¢2), @} is the direct problem solution for input parameter values {(11, ¢1), o4, s}.

There is a large body of literature concerning computational techniques to solve the direct and indirect
problems. In the interest of accuracy and computational efficiency, many of these computational techniques
treat the problems by sub-cases -- short lines, long lines, intermediate length lines, and other caveats and
exceptions. Each of these has been optimized in a way that is appropriate for the intended application or user
domain. For purposes of this International Standard, a recently published treatment ([ROL10Q]) that has one
mathematical formulation to cover all cases is utilized.

10.7.2 Auxiliary functions

The treatment of the direct and indirect problems in 10.7.3 and 10.7.4 require the auxiliary functions defined in
this subclause.

An important characteristic of a geodesic on an oblate ellipsoid is that the quantity termed the (non-metric)
Clairaut constant and defined by:

sin(a)cos(p)
1-¢£%sin’(p)

C =

has a constant value at every point on a given geodesic, where (4, ¢) is the coordinate of a point on the
geodesic and « is the azimuth of the curve at that point.

The mathematics required to solve the direct and indirect problems involves the use of elliptic integrals. The
incomplete elliptic integral of third kind is defined for real », 6, and m, with m* <1 as:

dé
P(n6,m)= .
(n0:m) f(1—nsin2§)\/1—msin2§

The treatment in [ROL10] defines two auxiliary functions: a longitude difference function L(c,6,,6,) and an arc
length function A(c,6,,6,) that are defined for all values of ¢, ¢, and 6, by:

248 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 18026:2012(E)

c(1-¢%) (10.16)

\/1_7 ﬁ(P(kz,Hz,kzgz)_P(k2’91’k282))’ c£0 |

L(0,6,6,) = lim L(c.6,6,)

L(c.,6,6,) =

and

A(c,6,6,) = %(P(kzsz,ez,kzsz) - P(k?2%,60,k°c%)). (10.17)
where

K- 11—_(:5;

10.7.3 The direct problem

Given an oblate ellipsoid with major semi-axis a and eccentricitye , let p; be a non-polar point on the ellipsoid
given by its surface geodetic coordinates (14, ¢;). Let a geodesic be defined with p, as its initial point, o4 as its
initial forward azimuth, and arc length s . This geodesic will terminate at a point p».

The direct problem requires finding the surface geodetic coordinates (A, ¢,) of p, and the forward azimuth a,

of the geodesic at the point p,. The quantity o, +n is termed the back azimuth at p, as it points backwards
toward p1.

The given parameters are restricted to —% <@ < 7/ -n<a,<mands>0.

The functions L(c,6,,6,) and A(c,6,,6,)are used to solve the direct problem.
The given values in the direct problem (44, ¢1) and o, determine c,

e sin(a, )cos(¢)

1-¢%sin’(gp,) -
Then,

A =4 +L(c,6,6,),

¢, = arcsin(ksing,), and

a, = arctanz(cJ1 — K sinG,, k\1- K°c? sin6), )

where
0, = arcsin(sin(<p1)/k), k=+ % k=0 if || < g and k < 0 otherwise, and
6, is determined by:
s=A(c.6.6,). (10.18)
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Equation 10.18 has a unique solution for 6,. Reference [ROL12] gives the following Newton-Raphson
iteration, which rapidly converges to the solution:

TS

A(c,O,n)’

o [T canat ea) )

10.7.4 The indirect problem

o0 =6, +

Given an oblate ellipsoid with major semi-axis a and eccentricitye, let p; and p, be two points on the ellipsoid
given by their surface geodetic coordinates (41, @) and (12, ¢).

The indirect problem requires finding the shortest distance s on the ellipsoid from p; to p,. Further, for each

curve from p4 to p, whose arc length is s, it is required to find the forward azimuths oy and o, at the points p,
and p, respectively. (Such curves will be geodesics, and there will be 1, 2, or infinitely many of them.)

The given parameters are restricted to -1 <4, -4, <m, —% <@, < y and — % <@, < %

The solution to the indirect problem can be determined once ¢, the Clairaut constant for the solution geodesic
curve segment, is found. Dealing with the extreme ¢ values 0 and 1 separately simplifies the process.

The single meridional case: ¢ = 0 if 4, = A or if either point is a pole (|¢,| =Z or |p,|=Z). Then if ¢, <g,, the
solution is:

s=A(0,¢,9,), and o, =, =0.
Otherwise ¢, > ¢, , and the solution is:
s=A(0,0,,¢), and o, =1, = .

If either point is a pole, the azimuth at that point is undefined. The solution geodesic curve segment is unique
unless both given points are poles. In that case the solution set is the infinite set of all meridians.

Meridional segments joined at pole: ¢ =0if 4, = A4, £® and ¢, > —¢,. Then

s=A(0,p,n—9,), &, =0,a, =7
and the geodesic curve segment passes through the north pole.
Similarly, c=01if 4, =4, £ and g, <—-¢,. Then

s = A(O, OL—0, — n), a, =7, a, =0 and the geodesic curve segment passes through the south pole.

Equatorial segment: ¢ = 1if ¢, =¢, =0 and 0<|4, - 4| <mV1-£° . Then
s =a|/12 —/11|, and o, =a, =% if ¢, <, and , = @, = -7 otherwise.

The solution is unique.
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Near-antipodal equatorial segment: If ¢, =¢, =0 and the points are separated by more than the lift-off

longitude (nm < |/12 —A1| < ), then ¢ is determined by solving the equation:
A =2, =L(c,0,m) inthe interval 0 <c<1.

Assuming 4, < 4,, the solution parameters are then given by:
s =A(c,0,m), o, =arcsin(c), and o, =n—0,.

This geodesic curve segment lies in the northern hemisphere. A second solution lies in the southern
hemisphere in north-south symmetry.

Prograde typical: The remaining cases may be reduced to the prograde typical case of 0 <4, -4, <7 and
Py 2 |(/71| #0.

) cos sin
Define ¢, =——%2__and A, = L[cmax,[ A JEJ
2 ain2 2
J1-€°sin” ¢, Sing,

Then ¢ may be determined by an iterative solution of the equation:

Ay =2 =L(c.6,(c).0,(c)) inthe interval 0<c<c

max’

where

6,(c) = arcsin(sin(¢,) /k(c)), k(c)= ey and
arcsin(sin(a)/£(6)). ity 4 <1

0(c) = m/2, if A=A = Aot -
n—arcsin(sin(p,)/k(c)), if 4 -4 > Ay

The solution parameters are determined by ¢:

s =A(c,<91(c),92(c)),
a, = arctan2(<:,/1—82 sing,, k(c)V1-¢c? COS(/)1), and
o, = arctanz(c,uh—s2 sing,  k(c)V1-¢? cos%).

NOTE: Extremely small values of ¢ can cause numerical instability in some implementations. Alternative methods to
evaluate L(c,6,,6,)in this and other difficult cases are treated in [ROL12].

Other prograde cases: If 0 <4, -4, <7 and cases above do not apply, a new pair of points p; and p, that

satisfy the prototypical case constraints can be specified using parameters from the given pair p; and p,. The
indirect problem solution for points p; and p4, the shortest distance between them § , and the forward azimuths
a, and a, will determine the solution for p; and p, as follows:
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If|go2| <o, letps=(4, @) and ps= (A2, ¢1). Then o, =n-a, anda, =n-q,.
If|p,| < -, let ps = (A1, -@2) @nd ps = (4, -¢1). Then a, =, anda, = a, .
If|go1| <-¢,,letps= (A4, -¢)and ps = (A, -¢,). Then o, =n—-a, anda, =n—-0,.

In all these cases the arc length solution is the same, s = §, and the value of ¢ and the multiplicity of shortest
geodesic segments are also the same.

Retrograde cases: A retrograde case, 4, < 4,, is converted to a prograde case with ps = (1, ¢1) and ps =(44,
). Thena, =-a;, a, =-a,, and s =3. The value -c from prograde case is the retrograde solution value for
¢ and the multiplicity of shortest geodesic segments are the same.

http://standards.iso.org/ittf/PubliclyAvailableStandards/

252 © ISO/IEC 2012 - Al rights reserved


http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

	SRF operations
	Introduction
	Notation and terminology
	Operations on ORMs
	Introduction
	ORMs for a single object
	Relating ORMs for different objects

	Operations to change spatial coordinates between SRFs
	Introduction
	General case
	The matched normal embeddings case
	Matched normal embeddings and map projection SRFs
	Linear orthonormal 3D SRFs
	Instantiating abstract space linear SRFs

	Operations on directions, vectors, and orientations
	Introduction
	Specification of local tangent frame SRF
	Specification of direction
	Changing the reference coordinate of a direction
	Representing a direction in a different SRF
	Representing a vector quantity in a different SRF
	Representing an orientation in a different SRF

	Euclidean distance
	Geodesic distance operations
	Introduction
	Auxiliary functions
	The direct problem
	The indirect problem



