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6 Orientation 

6.1 Introduction 
The orientation of an object in space specifies how that object is aligned with respect to a reference 
configuration of that object. The reference configuration is a conceptual copy of the object that is defined with 
respect to a particular spatial reference frame. The orientation of the object may be specified by a distance 
preserving transformation that would make the reference configuration congruent to the object. Only the 
rotational components of this transformation are essential for the specification, as translation operations do 
not affect alignment. 
For computational purposes, an orthonormal set of axes is created and attached to the object. These axes are termed the object axes. Another orthonormal set of axes is created and attached in the same manner to the 
corresponding position of the reference configuration. These axes are termed the reference axes. An 
orientation specification is a rotation operation that would bring the reference axes into alignment with the 
corresponding object axes. (An alternative method of specification defines the inverse rotation operation, that 
is, the rotation that would bring the object axes into alignment with the reference axes.) Only a single rotation 
is required for such a specification, since, as a consequence of Euler's rotation theorem, a given series of 
rotations is equivalent to a single rotation. 
Rotation operator concepts and various mathematical representations of rotations have been in wide use from 
before the time of Euler's work on the subject. As a result, there are many different treatments in the literature, 
using similar terms with different meanings and different notational conventions. For this reason, rotation 
terms and notation used in this International Standard are fully defined. 
The specification of an ORM (see 7.4.4) depends on a similarity transformation (see 7.3.2) for which a rotation 
operator is a key component. Converting the representation of such rotation operators to and from the Matrix 
representation (see 6.4.2) is required for some change of SRF operations (see 10.3.2 and 10.4.5). Rotation 
operators are also important in some of the application domains that fall within the scope of this International 
Standard. This includes the ability to convert an object's orientation represented with respect to one SRF to its 
equivalent with respect to another SRF. 
6.2 Rotation operations and orientation 
Euler’s rotation theorem states that any distance-preserving transformation of 3D space that has at least one 
point fixed under the transformation is equivalent to a single rotation about an axis through an angle of 
rotation. If the axis is assigned a direction, the angle of rotation can be specified as a positive angle or a 
negative angle using the right-hand rule: conceptually, if the right-hand holds the axis with thumb pointing in 
the direction of the vector, the fingers curl in the positive angle direction.  
There are two conventions in use for specifying the angle of rotation. Either the angle is measured from the 
starting position of a point to its rotated position, or it is measured from its rotated position to its starting 
position. The first convention is the position vector rotation (PVR) convention, and the second convention is 
the coordinate frame rotation (CFR) convention. Figure 6.1 illustrates the two conventions for a point r that is 
rotated to a new position r' about an axis that is perpendicular to the plane of the figure. 
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Figure 6.1 — Rotation between r and r' in two conventions 

If n is a unit vector spanning a directed rotation axis, ( )θnR  shall denote the rotation about the axis n through 
angle θ  in PVR convention, and ( )θnΩ  shall denote the rotation about the axis n through angle θ  in the CFR 
convention. The two conventions are related as follows: ( ) ( ) ( )θ θ θ

−
= = −n n nR Ω R . An orientation 

specification for an object with respect to a reference shall be specified by either: 
a) A rotation ( )θnR  in PVR convention that would rotate the object from the reference configuration to 

align with the object configuration, or 
b) A rotation ( )θnΩ  in CFR convention that would rotate the object from the object configuration to align 

with the reference configuration. 
The relationship of rotation operations (in a given rotation convention) and orientation specifications are 
closely related, but is not one-to-one. The rotations ( )kθ + π2nR , where k is any positive or negative integer 
value, are distinct rotations that all correspond to the same orientation specification. Thus only the angle of 
rotation modulo 2π determines orientation. The same holds for CFR convention ( )kθ + π2nΩ . Large rotations 
(greater than one full revolution) are important in some applications, however, in this International Standard 
angles shall be considered equivalent modulo π2 . 
Two consecutive rotations result in a composite transformation that is also a rotation. In the PVR convention, if 
a rotation ( )θnR  is followed by a second rotation ( )ϕmR , the composite rotation in right-to-left operator order 
is ( ) ( )ϕ θm nR Ro . The composite rotation in the coordinate frame convention reverses the operator order: 
 ( ) ( ) ( ) ( )θ ϕ ϕ θ− − =n m m nΩ Ω R Ro o .  

(6.1) 
 
If the orientation of an object E with respect to a reference E0 is specified in PVR convention by 0E ER (or in CFR 
convention 

0E EΩ ) and if F0 is another reference and the orientation of E0 with respect to F0 is known, the 
orientation of E with respect to F0 is computed (in right-to-left operator order) as:   

 
0 0 0 0F E E E F E=R R Ro

  PVR convention 
0 0 0 0F E F E E E=Ω Ω Ωo

  CFR convention 
(6.2) 

 
NOTE  The order of the rotations is important because rotation operators are not commutative. 

r 

r' 

θ CFR 
θ PVR 

θ = coordinate frame rotation 
θ  = position vector rotation 
θ =  −θ PVR 

CFR  
PVR 
CFR  
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6.3 Rodrigues’ rotation formula 
The notion of a rotation about an axis though a given rotation angle is independent of any selection of a 
Euclidean coordinate system (i.e., coordinate free). If a rotation operator ( )θnR  in PVR convention rotates 
point r , the resulting rotated point ′r  may be computed using (coordinate free) vector space operations using 
Rodrigues’ rotation formula (see [BERN]): 
 ( ) ( )( )( ) ( )θ θ θ′ = + − • + ×cos 1 cos sinr r r n n n r  (6.3) 
The terms may be rearranged to the alternate form: 
 ( )( ) ( ) ( )θ θ′ = + − × × + ×1 cos sinr r n n r n r  (6.4) 
This formulation also applies to the CFR convention operator ( )θ−nΩ . 
6.4 Representations of Rotations 

6.4.1 Representation degrees of freedom and computational complexity 
A consequence of Euler’s rotation theorem is that any rotation operation on 3D Euclidean space has three 
degrees of freedom and may be specified by three scalar numbers. That is explicitly the case with Euler angle 
conventions (see 6.4.4.2).  
Other less compact specifications using four or more scalars together with constraint rules are commonly used 
because they are more amenable to some computations such as performing a rotation operation on a point, 
composing rotations, interpolating rotations, and other operations and/or because these parameters can be 
measured or modelled directly. The Matrix representation (see 6.4.2) and the Quaternion representation (see 
6.4.5) are in common use because the rotation of a point and the composition of rotations are directly 
computable as matrix or quaternion multiplications. Computing the composition of rotations in the Axis-angle 
representation (see 6.4.3) or in an Euler angle convention (see 6.4.4) usually require conversion to and from 
Matrix or Quaternion forms. All rotation representations defined below tacitly require an orthonormal basis for 
the coordinate representation of vectors. 
The various representation methods in prevalent use present different tradeoffs with respect to storage size, 
computational complexity, speed, and error control. Thus the best representation is dependent on the 
requirements and computational environment of a user application. For this reason, different representations 
are in use and interoperability becomes an issue. This issue is compounded by the non-standard meaning of 
terms in prevalent use. To support interoperability and SRM operations, this International Standard defines 
these terms and identifies several representation methods as well as algorithms for key operations on and 
inter-conversions between the representation methods. 
6.4.2 Matrix representation 
A 3x3 matrix M  is a rotation matrix, if it satisfies these properties: 

 

( ) =
=

T -1

det 1M

M M
 

(6.5) 

Matrices satisfying these properties form an algebraic group with respect to matrix multiplication. This group is 
known as the special orthogonal group of degree 3, SO(3). In particular, the product of any two rotation 
matrices is itself a rotation matrix.    
As a consequence of Euler's rotation theorem, the matrix has a unit eigenvector n  and three eigenvalues: 

i ie eθ θ+ −1, , . The transformation is then a rotation of positive angle θ  about the rotation axis spanned by the 
vector n  (the rotation axis points are fixed points under the transformation). 
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a a a

a a a

a a a

  =    

11 12 13

21 22 23

31 32 33

M , a corresponding axis unit vector n  and angle of rotation θ  is algorithmically  

determined as follows: 

 ( ) ( )a a a
θ θ π

      − + + −= = ≤ ≤                  
11 22 33Trace 1 1arccos arccos , 0 .2 2

M  

There are three cases for the computation of n  that depend on the value of θ . 
Case θ = 0 : There is no rotation so n  is indeterminate. 

Case θ< < π0 : Let =
1

n v
v

, where: 

 
a a

a a

a a

−  = −  − 

32 23

13 31

21 12

v . In this case, ( )v θ= 2 sin . 

Case: θ = π : First find the maximum diagonal element a a a11 22 33, , or  of R . Then: 
 Sub-case: a11  is the maximum and ( )a a a= +

T
11 12 131, ,v . 

 Sub-case: a22  is the maximum and ( )a a a= +
T

21 22 23, 1,v . 
 Sub-case: a33  is the maximum and ( )a a a= +

T
31 32 33, , 1v . 

Finally =
1

n v
v

.  

In all cases, −n and θ−  is also a solution.  
The matrix M operates on 3D Euclidean space by either right or left matrix multiplication of vectors. The left 
multiply operation ′ =r M r  corresponds to the PVR convention ( )θnR . The right multiply operation 
′ = = Tr r M M r  corresponds to the CFR convention ( )θnΩ . The product of two rotation matrices 

corresponds to the composition of the two rotations. 
NOTE 1  Matrix multiplication is generally not commutative. 

NOTE 2  The matrix has nine parameters; however the constraints on the determinant and the transpose reduce the 
degrees of freedom to three. 

A special case of a rotation matrix arises from a change of basis operation. If r  is a point in 3D Euclidean 
space and E  denotes that vector space with orthonormal basis , ,x y z , and ′E  denotes the same vector 
space with orthonormal basis ′ ′ ′, ,x y z . The coordinate representation of r  with respect to each basis is: 
 ( )r r r=

T
1 2 3r , where r r r= + +1 2 3 r x y z , and 

 ( )r r r′ ′ ′= T
1 2 3r , where r r r′ ′ ′ ′ ′ ′= + +1 2 3r x y z . 

The matrix M corresponding to the coordinate basis transformation from E  to ′E  ( ) ( )r r r r r r′ ′ ′a1 2 3 1 2 3: , , , ,  is 
given by the direction cosine matrix: 
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a a a

a a a

a a a

′ ′ ′• • •      ′ ′ ′= = • • •      ′ ′ ′• • •   

11 12 13

21 22 23

31 32 33

x x y x z x
M x y y y z y

x z y z z z
 

(6.6) 

 
NOTE 3  The direction cosine matrix is so named because each dot product in Equation (6.6) is the cosine of the angle 
between the two indicated unit vectors.  

The columns of the matrix are the , ,x y z  basis vectors in ′ ′ ′, ,x y z  coordinate representation while the rows (or 
columns of the transpose matrix) are the ′ ′ ′, ,x y z  basis vectors in , ,x y z  coordinate representation. Thus the 
transpose of the matrix corresponds to the inverse transformation ( ) ( )r r r r r r′ ′ ′ a1 2 3 1 2 3, , , , . 

6.4.3 Axis-angle representation 

The axis-angle representation ( )θ,n  is a coordinate system dependent representation of a PVR convention 
rotation ( )θnR . It consists of a unit vector ( )n n n=

T
1 2 3n  and a rotation angle θ . The corresponding 

rotation in the CFR convention is ( ) ( )θ θ
−

− =n nΩ Ω . This representation uses four scalar parameters n n n1 2 3, ,  
and θ . The unit constraint = 1n  reduces the degrees of freedom to three. The axis-angle representation is 
not unique. In particular, the axis-angle pairs ( )θ,n  and ( )θ− −,n  represent the same rotation, and when 
θ = 0 , n  may be any unit vector or the zero vector. 
NOTE  A three parameter version in the form ( ) ( )a a a θ=1 2 3, , n  is also in use. In this form, θ  is non-negative and is 
computed as ( )a a aθ = 1 2 3, ,  and ( )a a a

θ
= 1 2 3
1 , ,n  when θ ≠ 0 .  

The operation of an axis-angle rotation ( )θ,n  on 3D Euclidean space is given by Rodrigues’ rotation formula 
(Equation (6.3)). There is no direct computational formulation of the composition of two axis-angle rotations in 
axis-angle form. 
6.4.4 Principal rotations and Euler angle conventions 

6.4.4.1 Principal rotations 
Principal rotations depend on a given orthonormal basis for 3D Euclidean space. Unit axis vectors may be 
represented in that basis by the coordinate 3-tuples: ( ) ( ) ( )= = =

T T T1 0 0 , 0 1 0 , and 0 0 1x y z . As an axis of 
rotation, each of these unit vectors is termed a principal axis of rotation. A rotation about a principal axis is 
termed a principal rotation. Some authors refer to these rotations as elementary rotations. The vector space 
operators: ( ) ( ) ( ), , andα β γx y zR R R  denote the three principal rotations through the respective angles 
α β γ, , and  modulo π2  in the PVR convention. Principal rotations in the CFR convention are denoted by 

( )αxΩ , ( )βyΩ , and ( )γzΩ .  

6.4.4.2 Euler angles 
Euler angles are a specification of a rotation obtained by applying three consecutive principal rotations. There 
are twelve distinct ways to select a sequence of three principal axes and apply the principal position rotations 
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(24 if left-handed axes are considered)19. Each such ordered selection of axes is an Euler angle convention. 
There is little agreement among authors on names or notations for these conventions. There are numerous 
Euler angle conventions in use and many are named inconsistently. Some authors use a left-handed 
coordinate system. All coordinate systems in this International Standard are right-handed.  
This International Standard adopts the following convention and notation for Euler angles: Given a 3-tuple of 
Euler angles ( ), ,α β γ  the Euler convention specification shall be specified by a character string denoting the 
sequence of principal axes in the form A1– A2 – A3 where each symbol A1, A2 , A3 is one of the axis letters x, y, 
or z. Thus ( ), ,α β γ  in the z-x-z Euler convention is the composite of a principal rotation about the z-axis first, 
the x-axis second, and the z-axis again for the third rotation.  
The three angles representing a rotation in a given Euler angle convention are not necessarily unique modulo 
π2 . The conditions that result in non-unique angle 3-tuples are given in Table 6.4 for the z-x-z Euler angle 

convention and in Table 6.6 for the x-y-z Euler angle convention (see also 6.4.4.5). 
There are several ways to realize an Euler angle sequence. In the PVR convention, the three principal 
rotations may either be rotations about the original axes, or about the successively rotated axes. Given a 
rotation, let , ,x y z% % %  denote the principal axes after the successive rotations are applied to the original , ,x y z  
axes. To distinguish between these two coordinate bases, coordinates with respect to the (static) original 
basis , ,x y z  shall be termed space-fixed coordinates and those with respect to the sequentially rotating 
, ,x y z% % %  axes shall be termed body-fixed coordinates. It is useful to think of the , ,x y z% % %  as attached to a rigid 

entity that will be rotated. In the CFR convention, the realization is similar to the PVR body-fixed case in that 
the rotation angles are measured from the rotated axes (see Equation (6.1)). These three realizations of 
( ), ,α β γ  in the A1– A2 – A3 Euler convention (in right-to-left operator order) are:  

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

γ β α
α β γ
α β γ

=

= − − −

% % %

o o

o o

o o

3 2 1

1 2 3

1 2 3

A A A

A A A

A A A

PVR convention    space-fixed
PVR convention    body-fixed
CFR convention

R R R

R R R

Ω Ω Ω
  

(6.7) 

 
In Equation (6.7) axis letters A denote static axes and letters Ã denote successively rotated axes.  
EXAMPLE 1 Using Equation (6.7), ( )π π π6 4 2, ,  in the z-x-z Euler convention, the PVR realizations are: 
     ( ) ( ) ( )π π πo o2 4 6z x zR R R  space-fixed, and ( ) ( ) ( )π π π

%% %
o o6 4 2z x zR R R  body-fixed. 

 
EXAMPLE 2 Substituting ( )ψ θ ϕ, ,  in Equation (6.7), the Euler x-y-z convention has the following PVR realizations: 
      ( ) ( ) ( )ϕ θ ψo oz y xR R R  space-fixed, and ( ) ( ) ( )ψ θ ϕ

% % %
o ox y zR R R  body-fixed. 

There are no direct computational formulations for the operation of an Euler angle rotation on 3D Euclidean 
space or for representing the composition of two Euler angle rotations as a single Euler angle rotation. For 
these computations, the principal rotation sequence is commonly realized as a product of matrices or 
quaternions.   

                                                      
19 There cannot be two consecutive rotations on the same axis as they would combine to a single rotation.  Thus, among 
right-handed axis systems, there are 3 choices for the first rotation axis, 2 choices each for the second and third rotation 
axes to avoid repeating the preceding axis choice (3x2x2=12). 
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6.4.4.3 The z-x-z convention 

Generally, the initial xy-plane and the final rotated % %xy -plane intersect in a line. This line is termed the line of 
nodes for this convention. The Euler angles in the z-x-z convention are the three angles defined as follows: 

α  is the angle between the line of nodes and the %x -axis, 
β  is the angle between the z-axis and the %z -axis, and 
γ  is the angle between the x-axis and the line of nodes. 

In the case that the initial xy-plane lies in the final rotated % %xy -plane, β = 0  or β = π  (see 6.4.4.5).  
In some contexts α β γ, ,  are known, respectively, as the spin angle, the nutation angle, and the precession 
angle. These three angles specify a rotation as consecutive principal rotations using the z–axis, the x–axis and 
the  z–axis again. The three realizations (in right-to-left operator order) are: 
 ( ) ( ) ( )γ β αo oz x zR R R  PVR convention space-fixed, 
 ( ) ( ) ( )α β γ

%% %
o oz x zR R R  PVR convention body-fixed, and 

 ( ) ( ) ( )α β γ− − −o oz x zΩ Ω Ω  CFR convention. 
In the PVR body-fixed realization the first principal rotation is about the z-axis through angle α,  which rotates 
the x-axis to intermediate position ′x . Next is a rotation about the x'-axis through angle β , which rotates the z-
axis to z". The third rotation is about the z"-axis through angle γ . The sequence of PVR body-fixed rotations is 
illustrated in Figure 6.2.  
6.4.4.4 The x-y-z convention and Tait-Bryan angles 
In this convention the line of nodes is the intersection of the xy-plane and the final rotated yz% % -plane. The Euler 
angles in this convention are defined as follows: 

φ  is the angle between the line of nodes and the %y -axis, 
θ  is the angle between %x -axis and the xy-plane, (equivalently, the z-axis and the % %yz -plane), and 
ψ  is the angle between the y-axis and the line of nodes. 

These three angles ( ), ,ϕ θ ψ  specify a rotation that may be realized (in right-to-left operator order) as:  
      ( ) ( ) ( )ψ θ φo oz y xR R R  PVR convention space fixed,  
      ( ) ( ) ( )φ θ ψ

% % %
o ox y zR R R  PVR convention body-fixed and 

      ( ) ( ) ( )φ θ ψ− − −o ox y zΩ Ω Ω  CFR convention. 
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Figure 6.2 — Euler z-x-z body-fixed realization 

 
The Euler angles in the PVR body-fixed realization are variously termed Tait-Bryan angles, Cardano angles, 
or nautical angles. The various names given to these angle symbols include: 

φ  roll or bank or tilt, 
θ  pitch or elevation, and 
ψ  yaw or heading or azimuth (see Figure 6.3). 
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Figure 6.3 — Tait-Bryan angles 
6.4.4.5 Gimbal lock 
The term gimbal lock refers to a gyroscope mounted in three nested gimbals to provide three degrees of 
rotational freedom. Each mounting scheme corresponds to an Euler angle convention. In any such mounting 
scheme, there exist critical angles for the middle gimbal that reduce the rotational degrees of freedom from 
three to two. In those critical configurations, the gimbals lie in a single plane and rotation within that plane is 
figuratively "locked out" by the gimbal mechanism. This loss of a degree of freedom is termed "gimbal lock". 
In the case of the Euler angle - -z x z  rotation convention, it is assumed that the xy-plane and % %xy -plane 
intersect in a line (the line on nodes). That assumption is met when (modulo 2π) β ≠ 0  and β ≠ π . If not, 
β = 0  or β = π  and the consecutive rotations collapse down to a single principal rotation: 

 ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

β γ α γ α γ α
β γ α γ α γ α
= = = +

= π π = − = −

o o o

o o o

0 : 0
:

z x z z z z

z x z z z z

R R R R R R
R R R R R R

. (6.8) 

NOTE 1 This situation is illustrated by a spinning table top. The top spins on its spin-axis and precesses about the 
precession-axis. The angle between the spin- and precession-axes is the nutation angle. When the spin-axis is perfectly 
vertical (either upright or upside down), the nutation angle is 0 or π and the spin- and precession-axes become 
indistinguishable from each other as indicated in Equation (6.8).  

In the case of the Euler angle x-y-z convention (Tait-Bryan angles) it is assumed that the xy-plane and % %yz -
plane intersect in a line (the line of nodes). That assumption is met when θ π≠ ± 2  modulo 2π. If not, 
θ π= ± 2 and the %x -axis becomes parallel to the z-axis and the consecutive rotations collapse down to a 
single principal rotation:  

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

θ π ψ π φ ψ φ
θ π ψ π φ ψ φ
= + = +

= − − = −

o o

o o

2 : 2
2 : 2

z y x z

z y x z

R R R R
R R R R

. 
(6.9) 

 

x-axis 

y-axis z-axis 

φ  roll 

ψ  Yaw 
θ  pitch 
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NOTE 2 This situation is illustrated by an aircraft as in Figure 6.3. When the aircraft either climbs vertically, or dives 
vertically, roll-rotation cannot be distinguished from (plus or minus) yaw-rotation. This occurs at critical pitch angles of 
θ = ± π 2  as indicated in Equation (6.9). 

6.4.5 Quaternion representation 

6.4.5.1 Quaternion notations and conventions  
The quaternion system is a 4-dimensional vector space together with a vector multiplication operation that 
forms a non-commutative associative algebra. In analogy to complex numbers that are written as 
a b+ = −2, 1i i , quaternion axes , , ,i j k  are defined with the following relationships: = = = = −

2 2 2 1i j k ijk . 
There are several notational conventions in use including the three termed in this International Standard as 
the Hamilton form, the 4-tuple form, and the scalar vector form. In these notation forms a quaternion q  is 
denoted as follows: 
 
 e e e e= + + +0 1 2 3q i j k     Hamilton form 
 ( )e e e e= 0 1 2 3, , ,q      4-tuple form 
 ( )e= 0,q e , ( )e e e=

T
1 2 3e  scalar vector form 

 
where e e e e0 1 2 3, , ,  are scalar values. 
The e0  value is termed the real (or “scalar”) part of q  and ( )e e e1 2 3, ,  is termed the imaginary (or “vector”) part 
of q . The remainder of this clause uses the scalar vector form. 
NOTE 1  In the literature, the component order of the scalar vector form is sometimes reversed: ( )e= 0,q e . 

NOTE 2 A unit quaternion (see below) in 4-tuple form is also termed the Euler parameters (or the Euler-Rodrigues 
parameters) of a rotation. In the literature, the real part of the 4-tuple form is sometimes placed last: ( )e e e e= 1 2 3 4, , ,q  where 
e e=4 0.  

6.4.5.2 Quaternion algebra 
Quaternion multiplication and other operations are defined in Annex A in all the three notational forms. Given 
quaternions ( )e= 0,q e  and ( )d= 0, ,p d  A.10 defines: 
  the product ( ) ( )( )d e e d= − • + + ×0 0 0 0,pq d e d e d e ,  
 the conjugate ( )e∗

= −0,q e ,  
 the norm ( )e e e e∗ ∗= = + + +2 2 2 2

0 1 2 3 ,qq q q 0 , and  
 the modulus e e e e∗= = + + +2 2 2 2

0 1 2 3q qq .  

A quaternion q  is a unit quaternion if = 1q . In that case ( )∗ ∗
= = 1,qq q q 0 which is the multiplicative identity 

so that, for a unit quaternion, its conjugate is its multiplicative inverse − ∗
=

1q q . Any unit quaternion may be 
expressed in the form:  
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 ( ) ( )( )θ θ= cos 2 , sin 2q n  (6.10) 
where:  

 ( )e e e eθ

=

= ⋅ + +2 2 2
1 2 3 0

1 is a unit vector in 3D space,

2 arctan2 , .

n e
e

 

 

NOTE  The two argument arctangent function arctan2() is defined in Annex A. 
6.4.5.3 Quaternion operators on 3D Euclidean space 
Each quaternion q  corresponds to a transformation of 3D Euclidean space as follows.  If r  is a vector in 3D 
Euclidean space, the corresponding quaternion is formed by using 0 for the real part and r  for the imaginary 
part ( )0,r . A unit quaternion q  operates on ( )0,r  by left multiplying with q  and right multiplying with its 
conjugate ∗q . The real part of the product ( ) ( )r∗ ′ ′= 00, ,q r q r , is 0. Thus, ( ) ( )∗ ′=0, 0,q r q r  is pure imaginary 
and the quaternion q  associates ′r  with r . Symbolically the operation on r  is: 
 ( ){ }imaginary part ∗′ =a 0,r r q r q . 

(6.11) 
This is equivalent to: 
 ( ) ( )e e′ = − • + • + ×2

0 02 2r e e r e r e e r . (6.12) 
( )e− = − −0,q e  produces the same ′r  so that q and −q  produce equivalent rotations. 

If ( ) ( )( )θ θ= cos 2 , sin 2q n  is a unit quaternion, Equation (6.12) reduces to the Rodrigues rotation formula for 
a clockwise rotation about n  through angle θ : 
 
 ( ) ( )( )( ) ( )θ θ θ′ = + − • + ×cos 1 cos sinr r n r n n r . 
A non-zero quaternion p  and its corresponding unit quaternion = 2

pq
p

 perform the same rotation 
 ( ) ( )− ∗

=
10, 0,p r p q r q .  

 
For this reason, some authors use ( ) −10,p r p  operations for any non-zero quaternion while others use the 
( ) ∗0,q r q  operator and restrict operations only to unit quaternions.  

The quaternion representation of rotation facilitates the computation of the composition of two rotations.  
If 1q and 2q  are two unit quaternions, the composite rotation on r  that is obtained by first rotating with the 
rotation induced by 1q  and then rotating the result with the rotation induced by 2q is the same as the single 
rotation induced by the product 2 1q q  since ( ){ } ( ) { }( ){ }∗∗ ∗ ∗ ∗

= =2 1 1 2 2 1 1 2 2 1 2 10, 0, 0,q q r q q q q r q q q q r q q . 
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6.4.6 Representation summary 
Some important attributes of the representations in this section are summarized in Table 6.1. 

Table 6.1 — Summary of representation attributes 

Representation 
type 

Data 
compo-
nents 

Data 
constraints 

Ambiguities 
(modulo π2 ) Composition Inverse 

Axis-angle 
( )θ,n  4 = 1n   

( )θ,n  
is equivalent to 

( )θ− −,n . 
If θ = 0 , n  is 
indeterminate 

Convert to/from 
another 

representation 
for the operation 

( )θ−,n  
or  

( )θ− ,n  

Matrix 
R  9 ( ) =

=
T  -1

det 1R

R R
 None Matrix 

multiplication TR  

Euler angle 
conventions 3 None 

2 or more  
 

z-x-z convention: 
see Table 6.4 

Tait-Bryan x-y-z angles:  
see Table 6.6 

Convert to/from 
another 

representation for 
the operation 
(see Note 2) 

See 
Note 1 

Unit quaternion 
q  4 unit constraint: 

∗
= 1qq  

q is equivalent to −q  
(see Note 3) 

Quaternion 
multiplication  

∗q  or 
∗

−q  
 

NOTE 1  The inverse in the Euler angle z-x-z convention is 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )γ β α α β γ α β γ  = − − − = o o o o o o

-1
z x z z x z z x zR R R R R R Ω Ω Ω  

The inverse in the Euler angle z-y-x convention (Tait-Bryan angles) is 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ψ θ φ φ θ ψ ψ θ φ  = − − − = o o o o o o

-1
z y x x y z z y xR R R R R R Ω Ω Ω  

NOTE 2  The composition of Euler angle operations may also be performed in a "direct" method that involves lengthy 
expressions combining forward and inverse trigonometric functions. 

NOTE 3  Formulae such as Equation (6.12) require the unit quaternion constraint. Other useful relationships such as 
Equation (6.11) do not have that requirement. For that reason, some applications do not enforce the unit constraint. In the 
unconstrained case, every non-zero scalar multiple of a given quaternion is rotationally equivalent to it. 
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6.5 Inter-converting between rotations representations 

6.5.1 Euler angle conventions and matrix representation 

6.5.1.1 Matrix forms of principal rotations 
The matrix representations of principal rotations are given in Table 6.2.  

Table 6.2 — Principal rotations as matrix operators 
Name Notation Matrix operator (left multiplication) 

x-axis principal rotation 
CFR convention ( )1ωxΩ  ( ) ( ) ( )

( ) ( )
X ω ω ω

ω ω

  =   − 
1 1 1

1 1

1 0 0
0 cos sin
0 sin cos

Ω ,  

where 1ω  is the angle of rotation. 

x-axis principal rotation 
PVR convention ( )1ωxR  ( ) ( ) ( )

( ) ( )
X ω ω ω

ω ω

  = −   
1 1 1

1 1

1 0 0
0 cos sin
0 sin cos

R ,  

where 1ω  is the angle of rotation. 

y-axis principal rotation 
CFR convention ( )2ωyΩ  ( )

( ) ( )
( ) ( )

Y

ω ω

ω

ω ω

 − =    

2 2

2

2 2

cos 0 sin
0 1 0

sin 0 cos
Ω ,  

where 2ω  is the angle of rotation. 

y-axis principal rotation 
PVR convention ( )2ωyR  ( )

( ) ( )
( ) ( )

Y

ω ω

ω

ω ω

  =   − 

2 2

2

2 2

cos 0 sin
0 1 0

sin 0 cos
R ,  

where 2ω  is the angle of rotation. 

z-axis principal rotation 
CFR convention ( )3ωzΩ  ( )

( ) ( )
( ) ( )Z

ω ω

ω ω ω

  = −   

3 3

3 3 3

cos sin 0
sin cos 0
0 0 1

Ω ,  

where 3ω  is the angle of rotation. 

z-axis principal rotation 
PVR convention ( )3ωzR  ( )

( ) ( )
( ) ( )Z

ω ω

ω ω ω

 − =    

3 3

3 3 3

cos sin 0
sin cos 0

0 0 1
R ,  

where 3ω  is the angle of rotation. 
 
6.5.1.2 The z-x-z Euler angle convention 

The angle sequence ( ), ,α β γ  in the Euler z-x-z convention is converted to a matrix M by forming the 
matrix product of the corresponding three principal rotation matrices specified in Table 6.2. The resulting 
matrix is given in Equation (6.13). 
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( ) ( ) ( )
cos cos cos sin sin sin cos cos cos sin sin sin
cos sin cos cos sin cos cos cos sin sin sin cos

sin sin sin cos cos

γ β α
α γ β α γ α γ β α γ β γ
β α γ α γ β α γ α γ β γ

β α β α β

= =
− − −  + − −   

z x zM R R Ro o

 

(6.13) 

 
Conversely, given a matrix M with elements aij, the equation may solved for the principal rotation factors 

( ) ( ) ( )γ β αo oz x zR R R , and therefore solved for angles ( ), ,α β γ . The solution is given in Table 6.3. 

Table 6.3 — Principal factors for the Euler z-x-z convention 

Case Principal factors for rotation ( ) ( ) ( )γ β αo oz x zR R R  
(all angles modulo 2π) 

( )
[ ]

aβ

β

=

< < π

33arccos
 principal value 
0

 ( )a aα = 31 32arctan2 ,  ( )a aγ = −13 23arctan2 ,  

a ≠ ±33 1 
( )

[ ]
aβ

β

=

π −

π < < π

33arccos
 2 principal value 

2
 ( )a aα = − −31 32arctan2 ,  ( )a aγ = − 13 23arctan2 ,  

a = −33 1  β = π  any value of α  ( )a aγ α= +21 11arctan2 ,  

a = +33 1  β = 0  any value of α  ( )a aγ α= −21 11arctan2 ,  
 
In the case a ≠ ±33 1 , arccos() is multi-valued so that there are two valid solution sets depending on the 
quadrants selected for arccosine values20. The principal value solution is the commonly used one. The two 
argument arctangent function arctan2() is defined in Annex A. 
In the case a = −33 1 , using trigonometric identities, the matrix expression reduces to : 

 ( ) ( ) ( )
( ) ( )
( ) ( )
γ α γ α

γ π α γ α γ α
 − − = − − −  − 

o o

cos sin 0
sin cos 0

0 0 1
z y zR R R . 

For this reason, only the difference of the other two angles can be determined by using 
( )a aγ α− = 21 11arctan2 , . Therefore, all values are valid for α  if ( )a aγ α= +21 11arctan2 , . The case a = +31 1 is 

similar to the previous case with the sum of the angles determined by using ( )a aγ α+ = 21 11arctan2 , . These 
two cases correspond to the gimbal lock Equation (6.8). 
 
                                                      
20 Note that computer library functions such as acos() return the principal value only.  The second solution for β  may be 
obtained by subtracting the principal value from 2π . 
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As seen in the preceding tables, the three angle sequence corresponding to a given rotation or orientation 
operator is not unique modulo 2π. Two sequences, ( )α β γ1 1 1, ,  and ( )α β γ2 2 2, ,  of  z-x-z principal factors specify 
the same operator if they satisfy one the criteria specified in Table 6.4. 

Table 6.4 — Equivalence of z-x-z principal factor sequences 

Case 
(equality 

modulo 2π) 
Criteria for the equivalence of  

angle sequences ( )α β γ1 1 1, ,  and ( )α β γ2 2 2, ,  for  
principal factor z-x-z sequences 

β β=1 2  [ ]α α γ γ β β= = ≠ π1 2 1 2 1 2, , 0 or   (in)equalities modulo 2π 

β β+ = π1 2 2  [ ]α α γ γ β β− = π − = π ≠ π2 1 2 1 1 2, , 0 or    (in)equalities modulo 2π 

β β= = π1 2  α γ α γ− = −1 1 2 2   equality modulo 2π 

β β= =1 2 0  α γ α γ+ = +1 1 2 2   equality modulo 2π 
 
6.5.1.3 The Tait-Bryan convention x-y-z 

The angle sequence ( ), ,ϕ θ ψ  in Euler convention x-y-z is converted to a matrix M by forming the matrix 
product of the corresponding three principal rotation matrices specified in Table 6.2. The resulting matrix is 
given in Equation (6.14). 
Conversely, given matrix M with elements aij, the equation may solved for the principal rotation factors 

( ) ( ) ( )ψ θ φo oz y xR R R , and therefore solved for angles ( ), ,ϕ θ ψ . The solution is given in Table 6.5. 

 
( ) ( ) ( )

cos cos cos sin sin sin cos cos sin cos sin sin
sin cos sin sin sin cos cos sin sin cos cos sin

sin cos sin cos cos

ψ θ φ
ψ θ ψ θ φ ψ φ ψ θ φ ψ φ
ψ θ ψ θ φ ψ φ ψ θ φ ψ φ

θ θ φ θ φ

=
− +  + −  − 

z y xR R Ro o

 
(6.14) 
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Table 6.5 — Principal factors for the Euler x-y-z convention (Tait-Bryan) 

Case Principal factors for rotation ( ) ( ) ( )ψ θ φo oz y xR R R  
(all angles modulo 2π) 

( )
[ ]

aθ

θ

= −

−π < < π

31arcsin
 principal value 

2 2
 ( )a aφ = 32 33arctan2 ,  ( )a aψ = 21 11arctan2 ,  

a ≠ ±31 1  
( )

[ ]
aθ

θ

= −
π −

π < < 3π

31arcsin
 principal value 
2 2

 ( )a aφ = − −32 33arctan2 ,  ( )a aψ = − −21 11arctan2 ,  

a = −31 1 θ = π 2  ( )a aφ ψ= +12 13arctan2 ,  any value of ψ  

a = +31 1 θ = −π 2  ( )a aφ ψ= − − −12 13arctan2 ,  any value of ψ  
 
In the case a ≠ ±31 1 , arcsin() is multi-valued so that there are two valid solution sets depending on the 
quadrant selected for arcsine values21. The principal value solution is the commonly used one.  
In the case a = −31 1, using the trigonometric identities for the difference of angles and substituting θ =sin 1  
and θ =cos 0 , the matrix reduces to: 

 ( ) ( )
( ) ( )
( ) ( )
φ ψ φ ψ

ψ φ φ ψ φ ψ
 − −π    = − − −   2   − 

o o

0 sin cos
0 cos sin
1 0 0

z y xR R R . 

For this reason only the difference of the other two angles is determined as ( )a aφ ψ− = 12 13arctan2 , . 
Therefore, all values are valid for ψ  if we set ( )a aφ ψ= +12 13arctan2 , . The case a = +31 1 is similar to the 
previous case with the sum of the angles determined by ( )a aφ ψ+ = − −12 13arctan2 , . These two cases 
correspond to Equation (6.9) and are the gimbal lock cases. 
As seen in the preceding tables, the three angle sequence corresponding to a given rotation or orientation 
operator is not unique modulo 2π. Two sequences, ( )φ θ ψ1 1 1, ,  and ( )φ θ ψ2 2 2, ,  of  x-y-z principal factors specify 
the same operator if they satisfy one the criteria specified in Table 6.6. 

                                                      
21 Note that computer library functions such as asin() return the principal value only.  The second solution for θ  may be 
obtained by subtracting the principal value from π . 
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Table 6.6 — Equivalence of x-y-z principal factor sequences 

Case 
(equality 

modulo 2π) 
Criteria for the equivalence of  

angle sequences ( )φ θ ψ1 1 1, ,  and ( )φ θ ψ2 2 2, ,  for principal factor  
z-y-x rotation or x-y-z orientation sequences 

θ θ=1 2  φ φ ψ ψ θ θπ = = ≠ ± ≠ 2 1 2 1 2 1 2,   (in)equalities modulo 2π 

θ θ+ = π1 2  φ φ ψ ψ θ θπ − = π − = π ≠ ± ≠ 2 2 1 2 1 1 2,   (in)equalities modulo 2π 

θ θ π= =
21 2  φ ψ φ ψ− = −1 1 2 2   equality modulo 2π 

θ θ π= = −
21 2  φ ψ φ ψ+ = +1 1 2 2   equality modulo 2π 

 
6.5.2 Matrix and axis-angle 

Given a rotation matrix 
a a a

a a a

a a a

  =    

11 12 13

21 22 23

31 32 33

R , the corresponding axis-angle representation ( )θ,n  is determined 

using the procedure in 6.4.2. 
An axis-angle rotation ( )θ,n , with ( )n n n=

T
1 2 3n , is converted to rotation matrix R, using the matrix form of 

Rodrigues’ rotation formula (Equation (6.3)). 

 
( ) ( )( )

( ) ( )( ) ( )
θ θ

θ θ θ
×

×

 = + + − 
 = + − ⊗ + 

2
3 3

3 3

sin 1 cos

cos 1 cos sin
n n

n

R I S S

I n n S
 (6.15) 

 where:  

 

n n

n n

n n

−  = −  − 

3 2

3 1

2 1

0
0

0
nS   is the skew-symmetric matrix associated with ( )n n n=

T
1 2 3n and  

n n n n n n

n n n n n n

n n n n n n

  ⊗ =    

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

n n  is the outer-product of n with n. 
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The equation expands to yield matrix elements: 

 
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

n n n n n n n

n n n n n n n

n n n n n n n

θ θ θ θ θ θ
θ θ θ θ θ θ
θ θ θ θ θ θ

 − + − − − + = − + − + − −  − − − + − + 

2
1 1 2 3 1 3 2

2
2 1 3 2 2 3 1

2
3 1 2 3 2 1 3

1 cos cos 1 cos sin 1 cos sin
1 cos sin 1 cos cos 1 cos sin
1 cos sin 1 cos sin 1 cos cos

R  
(6.16) 

 
6.5.3 Axis-angle and quaternion 

A rotation in axis-angle form ( )θ,n  corresponds to unit quaternion ( ) ( )( )θ θ= cos 2 , sin 2q n . 

A unit quaternion corresponds to axis-angle form ( )θ,n  computed as in Equation (6.10). 

6.5.4 Matrix and quaternion 

The matrix M corresponding to a unit quaternion ( )e= 0,q e , ( )e e e=
T

1 2 3, ,e  is 

 
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

e e e e e e e e e e

e e e e e e e e e e

e e e e e e e e e e

 − + − +  = + − + −  − + − + 

2 2
2 3 1 2 0 3 1 3 0 2

2 2
1 2 0 3 1 3 2 3 0 1

2 2
1 3 0 2 2 3 0 1 1 2

1 2 2 2

2 1 2 2

2 2 1 2

M  
(6.17) 

  
The quaternion q corresponding to a rotation matrix 

a a a

a a a

a a a

  =    

11 12 13

21 22 23

31 32 33

M  is computed as follows: 

       ( )( ) ( )e a a a= + = + + +2 1 1
0 11 22 334 41 Trace 1R  

 
e

e a a

e a a
e

e a a

>
−      = = −      −   

2
0

1 32 23

2 13 31
0

3 21 12

if 0,

1 ,4e
 

( )
e

e a a

aa
e e e

e e

=

= − +

> = =

0
2 1
1 22 332

2 1312
1 2 3

1 1

else 0,
,

if 0, , ,2 2

 

     
( )

e

e a

a
e e

e

e e

=

= −

> =

= =

1
2 1
2 332

2 23
2 3

2

2 3

else 0,
1 ,

if 0, 2
else 0, 1.

 

A rotationally equivalent quaternion is –q. 
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6.5.5 Euler angle conventions and quaternions 
The principal rotations (see 6.4.4.1) correspond to the following quaternions: 

 
( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )

γ γ γ
β β β
α α α

↔

↔

↔

cos 2 , sin 2
cos 2 , sin 2
cos 2 , sin 2

z

y

x

R z
R y
R x

 

For each Euler angle convention, multiply the corresponding quaternions in the space-fixed realization 
ordering. Terms in the resulting product may be simplified using the orthonormal property of the vector set x, y 
and z, and various trigonometric identities. 
For the Euler angle - -z x z  convention, the quaternion q corresponding to ( ) ( ) ( )γ β αo oz x zR R R  is:  

 ( ) ( )( ) ( ) ( )( ) ( ) ( )( )γ γ β β α α= cos 2 , sin 2 cos 2 , sin 2 cos 2 , sin 2q z x z . 

Multiplied out the expression reduces to: 
 ( )e= 0,q e  
where: 

 
e

γ α β

γ α β γ α β γ α β

+   =       
 − − +           =                         

0

T

cos cos ,2 2

cos sin sin sin sin cos2 2 2 2 2 2e

 

For the Euler angle x-y-z convention (Tait-Bryan angles), the quaternion q corresponding to 
( ) ( ) ( )ψ θ φo oz y xR R R  is: 

 ( ) ( )( ) ( ) ( )( ) ( ) ( )( )ψ ψ θ θ φ φ= cos 2 , sin 2 cos 2 , sin 2 cos 2 , sin 2q z y x . 
Multiplied out the expression reduces to: 
 ( ) ( )e e e e e= =0 0 1 2 3, , , ,q e  
 where: 

 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

e

e

e

e

ψ θ φ ψ θ φ
ψ θ φ ψ θ φ
ψ θ φ ψ θ φ
ψ θ φ ψ θ φ

= +

= −

= +

= −

0

1

2

3

cos 2 cos 2 cos 2 sin 2 sin 2 sin 2
cos 2 cos 2 sin 2 sin 2 sin 2 cos 2
cos 2 sin 2 cos 2 sin 2 cos 2 sin 2
sin 2 cos 2 cos 2 cos 2 sin 2 sin 2

 

To convert a unit quaternion ( ) ( )e e e e e= =0 0 1 2 3, , , ,q e  to the Euler angle z–x–z convention 
( ) ( ) ( )γ β αo oz x zR R R , compute as follows: 

if ( )e e< + <2 2
1 20 1 : 

 
( ) ( )( )

( )( )
( ) ( )( )

e e e e e e e e

e e

e e e e e e e e

α
β β
γ

= + − −

= − + < < π

= − +

1 3 0 2 2 3 0 1

2 2
1 2

1 3 0 2 2 3 0 1

arctan2 ,
arccos 1 2 principal value: 0
arctan2 ,
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if ( )e e+ =2 2
1 2 0 : ( ) ( )( )e e e e e eβ α γ= 0 + = − − +2 21

1 2 0 3 2 32  and arctan2 , . 
if ( )e e+ =2 2

1 2 1 : ( ) ( )( )e e e e e eβ α γ= π − = − − +2 21
1 2 0 3 2 32  and arctan2 , . 

The solution in the first case is not unique, see Table 6.4. The last two cases are Euler angle gimbal lock 
cases. 
To convert a unit quaternion ( ) ( )e e e e e= =0 0 1 2 3, , , ,q e  to the Euler angle x-y-z convention (Tait-Bryan angles) 

( ) ( ) ( )ψ θ φo oz y xR R R , compute as follows. 

If ( )e e e e− ≠ ±1 3 0 22 1: 

 
( ) ( )( )
( )( )
( ) ( )( )

e e e e e e

e e e e

e e e e e e

φ
θ θ
ψ

= + − +

= − − − π < < π

= + − +

2 21
2 3 0 1 1 22

1 3 0 2

2 21
1 2 0 3 2 32

arctan2 ,
arcsin 2 principal value: 2 2
arctan2 ,

 

If ( )e e e e− = +1 3 0 22 1 :  ( ) ( )( )e e e e e e e eθ φ ψ= −π 2 + = − +1 2 0 3 1 3 0 2  and arctan2 , . 
If ( )e e e e− = −1 3 0 22 1 :  ( ) ( )( )e e e e e e e eθ φ ψ= π 2 − = − +1 2 0 3 1 3 0 2and   arctan2 , . 
The solution in the first case is not unique, see Table 6.6. The last two cases are Euler angle gimbal lock 
cases. 
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